Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Iteratively apply a transducer finite automaton
ResourceFunction["IteratedFiniteAutomaton"][rule,init,t] generates a list representing the evolution of the iterated finite automaton with the specified rule from initial condition init for t steps. | |
ResourceFunction["IteratedFiniteAutomaton"][rule,s0,init,t] starts the iterated finite automaton with state s0. | |
ResourceFunction["IteratedFiniteAutomaton"][rule,init] gives the result of evolving init for one step. | |
ResourceFunction["IteratedFiniteAutomaton"][rule,s0] is an operator form of IteratedFiniteAutomaton that represents one step of evolution. |
Apply a simple iterated finite automaton to a single list:
In[1]:= |
|
Out[1]= |
|
Iterate the same rule for 100 steps:
In[2]:= |
|
Out[2]= |
|
Evolve an iterated finite automaton specified as a code for 2 steps:
In[3]:= |
|
Out[3]= |
|
Evolve an iterated finite automaton specified as replacement rules for 2 steps:
In[4]:= |
|
Out[4]= |
|
Give the result of one step of evolving an iterated finite automaton:
In[5]:= |
|
Out[5]= |
|
In[6]:= |
|
Out[6]= |
|
The operator form equivalent:
In[7]:= |
|
Out[7]= |
|
In[8]:= |
|
Out[8]= |
|
Two different ways to specify the same iterated finite automaton:
In[9]:= |
|
Out[9]= |
|
Rostislav Grigorchuk's automaton:
In[10]:= |
|
Out[10]= |
|
Generate a Sierpiński gasket-like structure:
In[11]:= |
|
Out[11]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License