Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate a geometric transformation function for inversion about a point
ResourceFunction["InversionTransform"][p] gives a TransformationFunction that represents an inversion through the point p. |
Invert through the point {1,2}:
| In[1]:= |
| Out[1]= |
| In[2]:= |
| Out[2]= |
Inversion transform for a symbolic point {u,v,w}:
| In[3]:= |
| Out[3]= | ![]() |
Apply an inversion to a 2D shape:
| In[4]:= | ![]() |
| In[5]:= | ![]() |
| Out[5]= | ![]() |
Apply an inversion to a 3D shape:
| In[6]:= | ![]() |
| In[7]:= | ![]() |
| Out[7]= | ![]() |
Invert a graphic:
| In[8]:= |
| In[9]:= | ![]() |
| Out[9]= | ![]() |
Invert a 2D image:
| In[10]:= | ![]() |
| Out[10]= | ![]() |
Inversion transform of a 3D image with respect to the origin:
| In[11]:= | ![]() |
| Out[11]= | ![]() |
Invert the geometry and stereochemistry of a chiral molecule:
| In[12]:= |
| Out[12]= |
| In[13]:= |
| Out[13]= |
Show the two enantiomers:
| In[14]:= |
| Out[14]= | ![]() |
| In[15]:= |
| Out[15]= |
The inversion transformation is an isometric transform—that is, it preserves distances:
| In[16]:= |
| In[17]:= |
| In[18]:= |
| Out[18]= |
The inversion transformation is its own inverse:
| In[19]:= |
| In[20]:= |
| Out[20]= |
The determinant of the transformation matrix is –1 for odd-order dimensions and +1 for even-order dimensions:
| In[21]:= |
| In[22]:= |
| Out[22]= |
This work is licensed under a Creative Commons Attribution 4.0 International License