Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate a geometric transformation function for inversion about a point
ResourceFunction["InversionTransform"][p] gives a TransformationFunction that represents an inversion through the point p. |
Invert through the point {1,2}:
In[1]:= | ![]() |
Out[1]= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
Inversion transform for a symbolic point {u,v,w}:
In[3]:= | ![]() |
Out[3]= | ![]() |
Apply an inversion to a 2D shape:
In[4]:= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
Apply an inversion to a 3D shape:
In[6]:= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
Invert a graphic:
In[8]:= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
Invert a 2D image:
In[10]:= | ![]() |
Out[10]= | ![]() |
Inversion transform of a 3D image with respect to the origin:
In[11]:= | ![]() |
Out[11]= | ![]() |
Invert the geometry and stereochemistry of a chiral molecule:
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
Show the two enantiomers:
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
The inversion transformation is an isometric transform—that is, it preserves distances:
In[16]:= | ![]() |
In[17]:= | ![]() |
In[18]:= | ![]() |
Out[18]= | ![]() |
The inversion transformation is its own inverse:
In[19]:= | ![]() |
In[20]:= | ![]() |
Out[20]= | ![]() |
The determinant of the transformation matrix is –1 for odd-order dimensions and +1 for even-order dimensions:
In[21]:= | ![]() |
In[22]:= | ![]() |
Out[22]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License