Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate a geometric transformation function for inversion about a point
ResourceFunction["InversionTransform"][p] gives a TransformationFunction that represents an inversion through the point p. |
Invert through the point {1,2}:
In[1]:= |
Out[1]= |
In[2]:= |
Out[2]= |
Inversion transform for a symbolic point {u,v,w}:
In[3]:= |
Out[3]= |
Apply an inversion to a 2D shape:
In[4]:= |
In[5]:= |
Out[5]= |
Apply an inversion to a 3D shape:
In[6]:= |
In[7]:= |
Out[7]= |
Invert a graphic:
In[8]:= |
In[9]:= |
Out[9]= |
Invert a 2D image:
In[10]:= |
Out[10]= |
Inversion transform of a 3D image with respect to the origin:
In[11]:= |
Out[11]= |
Invert the geometry and stereochemistry of a chiral molecule:
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
Show the two enantiomers:
In[14]:= |
Out[14]= |
In[15]:= |
Out[15]= |
The inversion transformation is an isometric transform—that is, it preserves distances:
In[16]:= |
In[17]:= |
In[18]:= |
Out[18]= |
The inversion transformation is its own inverse:
In[19]:= |
In[20]:= |
Out[20]= |
The determinant of the transformation matrix is –1 for odd-order dimensions and +1 for even-order dimensions:
In[21]:= |
In[22]:= |
Out[22]= |
This work is licensed under a Creative Commons Attribution 4.0 International License