Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the inversion surface
ResourceFunction["InversionSurface"][ρ,s,t] computes the inversion of a surface s with respect to a sphere of radius ρ and parameters u, v. | |
ResourceFunction["InversionSurface"][q,ρ,s,t] computes the inversion with respect to a sphere displaced to a point q. |
Define a torus:
| In[1]:= |
| Out[1]= |
The inverse surface of a torus is a Dupin cyclide:
| In[2]:= |
| Out[2]= |
| In[3]:= |
| Out[3]= |
Visualize them:
| In[4]:= | ![]() |
| Out[4]= | ![]() |
Define a helicoid:
| In[5]:= |
| Out[5]= |
The inverse surface of a helicoid:
| In[6]:= | ![]() |
| Out[6]= |
A plot, including the inversion sphere:
| In[7]:= | ![]() |
| Out[7]= | ![]() |
Zoom in near the origin:
| In[8]:= | ![]() |
| Out[8]= | ![]() |
The inversion displaced to a point q:
| In[9]:= | ![]() |
| Out[9]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License