Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Check whether an integer is a palindrome for any base and digits length
ResourceFunction["IntegerPalindromeQ"][n] returns True if the integer n is identical to IntegerReverse[n], and False otherwise. | |
ResourceFunction["IntegerPalindromeQ"][n,b] returns True if the integer n is identical to IntegerReverse[n,b], and False otherwise. | |
ResourceFunction["IntegerPalindromeQ"][n,b,len] returns True if the integer n is identical to IntegerReverse[n,b,len], and False otherwise. |
A palindromic integer:
| In[1]:= |
| Out[1]= |
A binary palindrome:
| In[2]:= |
| Out[2]= |
| In[3]:= |
| Out[3]= |
This is not palindromic:
| In[4]:= |
| Out[4]= |
This is a palindrome after padding it with zeros on the left:
| In[5]:= |
| Out[5]= |
A palindrome using a mixed radix:
| In[6]:= |
| Out[6]= |
Tetradic numbers remain invariant when flipped back to front and up-down. Hence they only contain digits 0, 1, 8. These are all tetradic numbers with up to five digits:
| In[7]:= |
| Out[7]= |
Some of them are primes:
| In[8]:= |
| Out[8]= |
For an integer n, IntegerPalindromeQ[n] is equivalent to PalindromeQ[n]:
| In[9]:= |
| Out[9]= |
| In[10]:= |
| Out[10]= |
IntegerPalindromeQ[n] is equivalent to IntegerPalindromeQ[n,10]:
| In[11]:= |
| Out[11]= |
| In[12]:= |
| Out[12]= |
Specify a different base:
| In[13]:= |
| Out[13]= |
IntegerPalindromeQ[n,b] is equivalent to IntegerPalindromeQ[n,b,IntegerLength[n,b]]:
| In[14]:= |
| Out[14]= |
| In[15]:= |
| Out[15]= |
| In[16]:= |
| Out[16]= |
Specify a different digits length:
| In[17]:= |
| Out[17]= |
IntegerPalindromeQ[n,b,len] returns True if n is identical to IntegerReverse[n,b,len]:
| In[18]:= |
| Out[18]= |
| In[19]:= |
| Out[19]= |
The first nine coefficients of this series expansion are special palindromic numbers:
| In[20]:= |
| Out[20]= |
| In[21]:= |
| Out[21]= |
| In[22]:= |
| Out[22]= |
Those coefficients can also be generated as squares of repunits 1, 11, 111, etc.:
| In[23]:= |
| Out[23]= |
Addition of an integer n and IntegerReverse[n] gives a palindromic number in some cases:
| In[24]:= |
| Out[24]= |
| In[25]:= |
| Out[25]= |
But not always:
| In[26]:= |
| Out[26]= |
| In[27]:= |
| Out[27]= |
It is conjectured that this algorithm eventually produces a palindromic number for every decimal input:
| In[28]:= |
| In[29]:= |
| Out[29]= |
| In[30]:= |
| Out[30]= |
| In[31]:= |
| Out[31]= |
There are numbers for which it is not known whether the algorithm succeeds, the smallest being 196:
| In[32]:= |
| Out[32]= |
An integer can be a palindrome in multiple bases:
| In[33]:= |
| Out[33]= |
| In[34]:= |
| Out[34]= |
This work is licensed under a Creative Commons Attribution 4.0 International License