Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Check whether an integer is a palindrome for any base and digits length
ResourceFunction["IntegerPalindromeQ"][n] returns True if the integer n is identical to IntegerReverse[n], and False otherwise. | |
ResourceFunction["IntegerPalindromeQ"][n,b] returns True if the integer n is identical to IntegerReverse[n,b], and False otherwise. | |
ResourceFunction["IntegerPalindromeQ"][n,b,len] returns True if the integer n is identical to IntegerReverse[n,b,len], and False otherwise. |
A palindromic integer:
In[1]:= | ![]() |
Out[1]= | ![]() |
A binary palindrome:
In[2]:= | ![]() |
Out[2]= | ![]() |
In[3]:= | ![]() |
Out[3]= | ![]() |
This is not palindromic:
In[4]:= | ![]() |
Out[4]= | ![]() |
This is a palindrome after padding it with zeros on the left:
In[5]:= | ![]() |
Out[5]= | ![]() |
A palindrome using a mixed radix:
In[6]:= | ![]() |
Out[6]= | ![]() |
Tetradic numbers remain invariant when flipped back to front and up-down. Hence they only contain digits 0, 1, 8. These are all tetradic numbers with up to five digits:
In[7]:= | ![]() |
Out[7]= | ![]() |
Some of them are primes:
In[8]:= | ![]() |
Out[8]= | ![]() |
For an integer n, IntegerPalindromeQ[n] is equivalent to PalindromeQ[n]:
In[9]:= | ![]() |
Out[9]= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
IntegerPalindromeQ[n] is equivalent to IntegerPalindromeQ[n,10]:
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
Specify a different base:
In[13]:= | ![]() |
Out[13]= | ![]() |
IntegerPalindromeQ[n,b] is equivalent to IntegerPalindromeQ[n,b,IntegerLength[n,b]]:
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
Specify a different digits length:
In[17]:= | ![]() |
Out[17]= | ![]() |
IntegerPalindromeQ[n,b,len] returns True if n is identical to IntegerReverse[n,b,len]:
In[18]:= | ![]() |
Out[18]= | ![]() |
In[19]:= | ![]() |
Out[19]= | ![]() |
The first nine coefficients of this series expansion are special palindromic numbers:
In[20]:= | ![]() |
Out[20]= | ![]() |
In[21]:= | ![]() |
Out[21]= | ![]() |
In[22]:= | ![]() |
Out[22]= | ![]() |
Those coefficients can also be generated as squares of repunits 1, 11, 111, etc.:
In[23]:= | ![]() |
Out[23]= | ![]() |
Addition of an integer n and IntegerReverse[n] gives a palindromic number in some cases:
In[24]:= | ![]() |
Out[24]= | ![]() |
In[25]:= | ![]() |
Out[25]= | ![]() |
But not always:
In[26]:= | ![]() |
Out[26]= | ![]() |
In[27]:= | ![]() |
Out[27]= | ![]() |
It is conjectured that this algorithm eventually produces a palindromic number for every decimal input:
In[28]:= | ![]() |
In[29]:= | ![]() |
Out[29]= | ![]() |
In[30]:= | ![]() |
Out[30]= | ![]() |
In[31]:= | ![]() |
Out[31]= | ![]() |
There are numbers for which it is not known whether the algorithm succeeds, the smallest being 196:
In[32]:= | ![]() |
Out[32]= | ![]() |
An integer can be a palindrome in multiple bases:
In[33]:= | ![]() |
Out[33]= | ![]() |
In[34]:= | ![]() |
Out[34]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License