Function Repository Resource:

ImageTakeAt

Source Notebook

Get a part of an image at a specified position with specified dimensions

Contributed by: AMP

ResourceFunction["ImageTakeAt"][image, center, dimensions]

takes a part of the image around the specified center position up to the requested dimensions.

ResourceFunction["ImageTakeAt"][image, center, dimensions, background]

takes a part of the image with the given dimensions, padding with background as needed.

Details

ResourceFunction["ImageTakeAt"][image, center, dimensions, background] uses ImagePad[subimage, background] to set the background color and pad the subimage.
Only for two odd-valued subimage dimensions, the image part will be exactly centered around specified center position. For an even-valued subimage dimensions, to avoid image content interpolation, the resulting subimage will be taken half a pixel upwards and/or to the left relative to the specified center.
ResourceFunction["ImageTakeAt"] currently only works for 2D images.

Examples

Basic Examples (5) 

Get a test image of the moon:

In[1]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/2e54979f-7b33-4bf0-bfa9-17317a0edcea"]

Get a subimage:

In[2]:=
ResourceFunction["ImageTakeAt"][moon, center = {1, 222}, dimensions = {128, 64}]
Out[2]=

Here, the size of the subimage is smaller than requested since its center was at the image’s border:

In[3]:=
ImageDimensions[%]
Out[3]=

Take an image part and pad it with the specified background color to obtain the requested dimensions:

In[4]:=
Map[ResourceFunction["ImageTakeAt"][moon, center, dimensions, #] &, {Red, Transparent}]
Out[4]=

Verify that the results have the expected sizes:

In[5]:=
Map[dimensions == ImageDimensions[#] &, %]
Out[5]=

Scope (5) 

Define a pattern image:

In[6]:=
pattern = \!\(\*
GraphicsBox[
TagBox[RasterBox[
       RawArray["Real32",{{{1., 1., 1.}, {0.5646560788154602, 0.08474795520305634, 0.5619234442710876}, {1., 1., 1.}, {
        0.03348027169704437, 0.4300873279571533, 0.7157250046730042}, {1., 1., 1.}}, {{0.8329219222068787, 0.7105229496955872, 0.7314381003379822}, {1., 1., 1.}, {
        0.5976433753967285, 0.667712390422821, 0.7099030613899231}, {
        1., 1., 1.}, {0.7506136298179626, 0.28365862369537354`, 0.33173638582229614`}}, {{1., 1., 1.}, {0.08899957686662674, 0.6156218647956848, 0.5254729986190796}, {1., 1., 1.}, {
        0.31468233466148376`, 0.021926982328295708`, 0.45569929480552673`}, {1., 1., 1.}}, {{0.7631984949111938, 0.6360676288604736, 0.18542690575122833`}, {1., 1., 1.}, {
        0.17495205998420715`, 0.8324634432792664, 0.9552257657051086}, {1., 1., 1.}, {0.5285191535949707, 0.6361931562423706, 0.3614344000816345}}, {{1., 1., 1.}, {
        0.7412189245223999, 0.00879684928804636, 0.4472665786743164}, {1., 1., 1.}, {0.7703076004981995, 0.04790664464235306, 0.8185895681381226}, {1., 1., 1.}}}], {{0, 5.}, {5., 0}}, {0., 1.},
ColorFunction->RGBColor],
BoxForm`ImageTag["Real32", ColorSpace -> "RGB", Interleaving -> True],
      
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{28.25, Automatic},
ImageSizeRaw->{5., 5.},
PlotRange->{{0, 5.}, {0, 5.}}]\);

Show the pattern image with Axes for pixel coordinates:

In[7]:=
ArrayPlot[ImageData[ColorNegate@pattern], ImageSize -> 100, Frame -> True, FrameTicks -> Evaluate[{Transpose[{#, Reverse[#]}], #} &[
    Range[ImageDimensions[pattern][[1]]]]], Epilog -> Text["\[Times]", center - 0.5]]
Out[7]=

Take a 3×3 subimage centered at {3,3}:

In[8]:=
odd = ResourceFunction["ImageTakeAt"][pattern, center = {3, 3}, {3, 3}];
ArrayPlot[ImageData[ColorNegate@odd], ImageSize -> 100, Frame -> True,
  FrameTicks -> Evaluate[{Transpose[{#, Reverse[#] + 1}], Transpose[{#, # + 1}]} &[
    Range[ImageDimensions[odd][[1]]]]], Epilog -> Text["\[Times]", center - 1 - 0.5]]
Out[9]=

Take a 2×2 subimage at {3,3}. It will be extracted half a pixel upwards and to the left of the specified center at {2.5, 3.5}:

In[10]:=
even = ResourceFunction["ImageTakeAt"][pattern, {3, 3}, {2, 2}];
ArrayPlot[ImageData[ColorNegate@even], ImageSize -> 100, Frame -> True, FrameTicks -> Evaluate[{{Transpose[{#, Reverse[#] + 2}], None}, {Transpose[{#, # + 1}], None}} &[
    Range[ImageDimensions[even][[1]]]]], Epilog -> {Text["\[Times]", center - {1, 2} - 0.5], Arrowheads[0.075], Arrow[{center - {1.5, 2.5}, center - {2, 2}}]}]
Out[11]=

Take a 4×3 subimage at {3,3}. To avoid image interpolation, it will be extracted half a pixel to the left of the specified center at {2.5, 3}:

In[12]:=
evenOdd = ResourceFunction["ImageTakeAt"][pattern, {3, 3}, {4, 3}];
ArrayPlot[ImageData[ColorNegate@evenOdd], ImageSize -> 100, Frame -> True, FrameTicks -> Evaluate[{{Transpose[{#, Reverse[#] + 0}], None}, {Transpose[{#, # + 0}], None}} &[
    Range[ImageDimensions[evenOdd][[1]]]]], Epilog -> {Text["\[Times]", center - {0, 1} - 0.5], Arrowheads[0.075], Arrow[{center - {0.5, 1.5}, center - {1, 1.5}}]}]
Out[13]=

Applications (6) 

ImageCorrelate can be used to locate an extracted subimage. Define a test image of a mandrill:

In[14]:=
mandrill = \!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJwsuudz41ia5jux98t+nN3Znp6uyqrMlFKe3oMgHAECBEHvvafoKUoiKVGU
9957710qM6X0PrOyTFd1dff0zJ2Nnt7YvWb+kquNuB+AODhfgHPO+z7P74nA
/XCLufk//d3f/V37f769mUMdWFtbqGz5+9sHW649Gc/FonSuEIvH2mTh/+N2
sv//v/73+PNfnk1srV+87ovsBd/+ejO9NdO7qnr0eX7z9VR5skskVlnopmCR
efzxtSGUTh0lF7/7aejZvr6rPTma3HqejJ+M7V0tkQqjCOUyIYmxzwVlnQqx
REizNaUCRfjYIq6zSFvNDOXlD2ww11ch1CKcXqZNOZBnF9VLhXZbnScP55aL
xWlXYcxu7/Zkyo7Ns3RlNbF51v7o00Lu7HD92YE9mJTrsXhUhurul8+Dcw8v
QJAGNRwZXV9cz+y8vhzamrHKMIVbUdidXL95vfjs6fOfH56/eT5x/rw8OTF9
0LNyObJ683jzYnHv0XZxfjfq9eT71Zuv9kf2LrQWmy7s0MIqI8W25a1925fT
V48XPtwcfPr+5vNPvXOFwvbg6osPTLFP7uaF4mEJrBDKv1q+6SpfPCkvbPYc
n7atX05cXO59fjdx9TM3GA73xvz90YWrh1LG7ej3juxe04aQXGufvjnsuziY
f784vPmYVukMHt7Vz5XLN29z6ag/LD77eebLL5+UtCTY6x6fCXtVmADnwE4a
zVn6jxc8g7GRq9nld+8mbqZy82ueiYCvAJcv52cfjgCkEZMHFC6BqiNSWe8w
xnHALd14vQgnI45xRqWR4hrAYyMTReOz3/fM7mwoJVKzV4LniImFbGMjj7DU
914MFRe61TpE10mqLVS029ZawYpL2dHHi3tfLnfeXxS2DxDar/UiAMHLLViv
P38HWtqNZWBovzD27HD+zdPLlzu6fHNyOL7344vdD2/f/P7p2vVh13z3yumE
XqWLZ0NGl7q7HPF3t2Xzs97YsEHdHAoTvZvbg5dHhe1y+8o5JfPB4trskK+8
+7RcrkweZF7++ftnz/5g8ICFeermlw905yjC54kRqUqA1dV/lWuzp7p71H5r
fHei79HPiZnNnofrF7//PjE70X66Q5lCnoJKitIGS9DgtOjavb2PH829+KNx
uG3z2WRkak1hMWid+Oga+cNf9pcuPygtxOil67tfbiBvkcJoCtWZPH69Q9Rx
OhkYmoj1R9MruczeTPl4t7DV6h/vatmMOGejF9+/LJYzUJScfjQdn07t3+yi
GrPBLFWQUCZJsmW85i4LgKpU/Dv+rmjXVFf/ruvlmy7MDmS6II0TLxadICCR
S6tbltMdu9vNk6N+t9kQkLRPt9rccVhUNbWUGJhbGZhpO/v+8Mm7d75Cc9eW
t2W/Z+nV8+DoPOnGZ08Shb3Bjc9vuw7eJTqGjCOZhcd7Gx8/DR2flg+WIwOD
oWQaMsqTox2l6bLCD5e3SqXFBVdnv6MQodtl9oE+JamgU+D0zTFq7zHquN7x
ZMvYvlHnV7e2Hr69Prr5gLig4Gz/+tPPtnKBpahq2+nh2YOsrxpBlhyUE2TY
VLq6jl79aO+udO5ujp09Jf2xlollHmzxVOjho+mp0w9CUlXqL5YOz6Zef8it
D+3/+Hzuw1vzVK8h0dq20br6Ye7hx/dkIKY3Vi9etPWMDvky2qCX7BjodGXN
Iy8mZvZmY92drSvz0Zl4vJTLL2YdHf2J+RZzJjO7PaVwMCaf/OaX+ZmXx69/
3fXNdMbnipKYw6JTCWFu/04uOzonpuDxq3Lv4WsyqM3PhiOzvelWPLOf6N48
hBROMd7UuW58+/Np+8wK5lfG++SLByl3ziy7K6C5HCqIDu+1tM+Hnvxw+PT9
tTefGt5NLr47Sh9dhxYvI7awN6+cve5defEiPbRpj1JtQ4nZRxtjrz6t3rwO
9/S4phfU7W3+itU/OAAgKKniI8GYZ2IvOjjnnJtqW5szRbTF3WTHUCHZHne4
4IRf7c6YO7a6O+eWM6UBT6LZQ3NKq12ZmXkM5YLh+tV3l/riIQ6qjWaeM2Mf
erLbfn42cHAspxjMAFF+hyzpQ1VaBaH0jXaWT07Hj94APFn/yWLlzeetjy9G
z2+8XWM7D1uthWjb6fLRx4vu05nDD1vx4lyTtCncYjLcrscesIR8A492WhfG
2vp9lRF9eLerY/eKT5mUOX523tU6VSQzFGjXyUVKDARxmD9+FD357urF+13v
YGr6y3lx+zVldIEGqNDlqOz0Dj3fKOy3v/zju/LaoVqPtfVYEVoYqhjXf7yY
2TuWsUmnRbB06n38Yam8OISqIJuLjlW0UiPBfsDFLfVLj8ajq2vp1vDN59Fn
Hx/FZpZHjvu2v+wvXH+vCo0IhVKdjtOy4Tm+3hAH2jUmnrUVH3u0O3x56p/q
7jzecAxOGdLuwkQADlPaEpXrHyycX8Wm+7rWR4afPNcgMYtcxpGzTTGlXMfw
QB5gZPvTVtAdBY0qV9jQqARQlljCldfV3kfJmqPXG/HxM7aMsvJ4ais3tT+R
3zrxtS3JYRpVs5V+d3pmFm+mCmvR2TevMu19gVRCAtaVxj3pmcnutX5v3wQT
jw8uB6iJ1OzN9tM///PM9fLQpXX8YBd3E77NwcziYGgwysS82x/3Z3dXFQqp
UonFpn1D188YJi9QsIjxfPfZKWzQmwZ8kMEjZYE8Dl/vFpeGkqnlDqYUHn89
OHz1QX57hF5Gk/S4Csajt5e5naXNT9Ovfv+MKbbIBXKLhZ2e9u7/fLh6faPO
DoFSIBTiD5xPrp0f6wGHJe719ftnHq45istYd/PGu8WJ/SdtHSMdXab910uD
Zy8CQ4PpUdPW6/3s2JJUqIQlGEDy0vP9tzIuBWXaENo5s9g+u9vSn0l2DtuC
ra6E2eAADcOdLl9JZSEjrdlAiIxNp7tOtiE8Iq8TN3Lu5uYj8YlTgb/LTMvb
NkcLfVtOlz1cSStxlVwHaUm70OcSamr6r0adPTsivgxEACaKjZ8uV+bOGTLC
Fgosfsg1NZY/f0k6DBOvZm+bApTCTRodl9WgNkBsJWlW80iaE4gi0V5m6iZR
eTq++OHtwsOTWA+ZvxqtXKwPHq6H0m7SCQbdoq75/NlNVu5ChnYmnUFtSzoR
Lwas/Y7M4UbvxQtFMKUPcU1Jl8iHgkKhCKh1h8HkWn/3Rsl1a2Hbu7TSZY7o
WyZXWtrDi6/nz399tfb0aOdotM3lhOVKI49j9ME7V9nDH05WH7+2GxIGK3/3
ulJZWQjlesxas7dg3H/df/7pReXk4PLT5trNTs/pfPPUaaRzbOFivf/k2tY3
n1h27L2do7N9CosTlwssbXSikqMzMaNL3rPQFS5npQCgb9ealBqz1SK0i7Kb
Q6ndEVMoRnsyhA7RFujOiVYWhOhTZBML8nZaK9s7OkcMsSK+gBZE4Lr6GoVG
gCm5joVmyOdXIhGxSZjf6NR1b9E5t2VmIjywYCwXZYiG4KnF8ia5Fx1/83zz
u997N0YXL5YMLQmRCjSrtQ2uaqK/JBY4uQi3gdugEzbJYlW7L6Oh+fzyx5/3
X3xwd7VPnAwcfNifff57eyrpaYtihoA72RVPasigvL3ULSJFTFRnEsKgU+Fu
t3a9OY0uzfEdSjyRQC3kA2E9fJ9FegB30hgquSKTrsGzs+TSTHgqPbB2mhh2
TV0OfvfXz8/++5e1l0+DffMIZKBjKpcsZvXAowf+7//989mrT6DUEgwqWnb7
K0ePNP6yZ2iuPFt6/mb82Y9PFi62rt/uefsjqaHhtr7B3Erhxc+fH9380WC8
bYfk+JNT4/yemHBRjBj3kyRDMXIOYxWKlCxEdFdGNABRva9o0mctKg7Xqqqn
/ASqIixWSu/w2JKtMi5BoQhT6nfCllSvNnxxmtw6EYFsKaYTCnXihtuT4eTn
nb6eWPPOOd1X6twaD1VGwxP+4vKZPpiAg3KrqxkOJjFGHMhrK3vriZCbdDN6
o1iRvAU/XKWuEYUflDcGWPaAEGxyhECmmGqU1wzuZF0rCxcfXr/9tF5Yafvy
y3r7Rf/Rq9e0zuXqCqntUUezTe1XMv3tHdsnEjVc2pokQ2Wjx+rZHOl7c1Le
HnGNducW5kENqZAxeCpiCBjV7aPu5WTzdGrg3fvrtztatyM43x2yq6cOuqdP
Hh6cDl2+XXz5x7fTZztaE2MrxClYbvVKzt6OHz1cCSeLuNvnbrP0bqw5F5c2
P7/eunwTXFi/+nAZm1gd3Z+HPa7UbH9wdCrXGxvfOY2OnCMKlTelGngx2/3o
qHVrT4YYBUKOnMtGDHIRXM2pvSciqhmCq3Vb1D4ViYirGgER2JgcSVvz/sRS
V9v6WLx3QFcoIfcb3Xo9KJCQTPX88/3KyhbpkLWN9YdynaSd1qiU3qgmvTe8
+vaXSM+oL9hJR02V1e7Ox9/50j67T2Uu+oLJGFNwg+JaRo9x7BLhva8I0+/E
ynpxQ51AxkWVd1URxsYBABvfmgH7nzxih6j4Srtrd/388/b0xUXP4tbs9cD4
dzdPP/6J8mTtccKSzxmTUXcenfx8ufX5Fzob7zjaw2w5yoWEZnuHTmdSqzOp
9ZOuk4cGtzK13Dx9dVHoLKQms70nXbm19cTkYP+2Wxujpy873N22yevZtukR
nQEND7p7h82f/jCUnWr2uZVSqbi6gaUU8202sHW+3Nc3CIuoeJIa31/devv2
5k9fNj7/fvnpDxZPV65QjPQkcqsLB9c3mpZc6ehw++JnwBuI9ucWvnzMnl9U
Hj0Jj4wgmBhph41GSkmIZRKeGrjXvFwMjywQuAJguLLfsrjCeqzxrgLnRbuM
wY4Wi7Pk9hgE0juucAuA+ETy3/Uf5+IHB56opjjhtxWM2akVsVFJG4XzN8st
y6eoz1javPBpI4XzoY2Xv+pcrYYMGc/HWle6vLPjGLdejjcyIVQmafRr+fI0
hsgZhCutN9xnoj6FwoYS9eYgMH78kPQ56X5J36ujvaue0YPL3r3FnpXO3Z+e
nL39VBnqtroktsFDj7fL1h4e/ny59+Mf1FPDHesVRmdB2xBPNpPtDLgHY4nn
n5YffVAYINc0evbzc+foJu1ymW8bLqTXmM1mHQA7PclCJXpb0nNZTy5J6/lT
55mu8/7n383srdlAqIYnE8mqhHJAoFTDfpI2R920I4gBYCLnTTiDAyul2av1
8aOn0VLMV4gGpmd83niy3OxsafZHY46QgTRCkU713LPZoWenA5vz6ZYM0m7H
CABQKxROnb8yqvWaWpYSqZlZKaeWpmW/e3APuPubRklto7BB5+ZEZspabRaX
CXkaJLg6HZw7E9Ii1ygzd32hTBqm301HpnvSm/ukQyojq1PLg+7udlPGNHZ8
YYvBA2PRg7fvlRaHK+qzFwu6pId2U1wxiic98G0L4KzkAEq6yOb+CVcpIDGy
uk4WJIT1VhCVhBAw3IYrnM6hg/s9WudtNhnsHFrJLA6//OFyZW9zcsmjcKPD
L942tzfnr8ZOf/5l4nTXMBAuHS3E1+csFKqJh+02s3cuM/Hqo8PTSdhoVNtw
+Mvx2c37Boyy5fXOQtTc0Z1Zzw0ej05dP3E5bF1XbTOPnmhoezIJT2wl+nZ6
3ZhGpr1nM8pUlhgeidBckQrG7C5YKgBlQpmKBBFUbaPJ9knT4tN9/8hqsLc4
sdFPhXp1vhyoQp0lvz3qM/jNBq8ZN+GBsF7nRANleWG0LNOCkaHb87GFx0v+
osVjBTvHfEiAUSkZMYDwBfcJMQj4fWJMlWxJmJptdFdXemQounsbhC4tegzv
DHUuTepNeO+jSVUm4Us5QJgnk7HDfqWKEshIllVHMV6hxi/oXkhzxRBjFxFK
IY02yoPCUFsynItLDKCx2USlMOdwPrfz0KDGrN3aocdHBo0PD2E6I2Z0kZai
zWCjnRmIxsXucjxT7nQ5nWtbrXpTJtIuJvWKTJcXoxpzG+Gbd9eYzuFt9/iG
O8pn8fjRTsfWBzAfadlq3/vue115NtoSwsKO8fNy31iXtx8bOl1k/L7O2awy
abdagPFny96N0+B4ZObZrivWrJTWA3phx0SK8ZlAJav5YLR95pBRmdUZhy/S
Imd0hLPZ2D5gzwTNa92uvl0ZZG4e8Yw/PEnOTYWX28bevh3cuyGK7vbF1pbe
RYwmEJwX7y8ZKn2YHCaNAkIjlgh5BCDQqQRSMQdurIVNfEgg0whqDIMuXUdB
oRQrjXJvJWwO+X09WTGhtasplZMJt6YzsysKSphd6La1O5whe6rZS+jkKqUY
ApuUQLUCFiFgFSG6Z7aiikZWo/xuJGKSCwVNwH288Xeo6B+UoZAEoaSy3ykR
ocUs01pZ6ekOW6zZTfKgIloc7kBpGlHVu2MmykTYfHrQolFgbIdJ4m9Lz6zM
EUbj+OvHs0cHkJ6SdlQUJr+C0BA5Z2Vpnd0EoQYZ7m92ZvRtxz3rb16UJkcS
y+GbX66n96bNY8GFk3l/MGJLkPl1ePZ8inLFLR5H63jC2u7qOijsf97vPDnv
WJy26DV88B5P2QjLpADIkcursxlTZqhZSwk1t0HyeMOWSuYytpbuIftiT8du
7+HvH5V3LgK+QCBndlfSxeWtjvJIMBSN5YHc+kjX3iMTxYBM0+hysSWXMkGA
pKYBV0n1RpJQAk1QnVLY8KCxxlhfz1cAGF3t7AQrNyeWvlkyak7Plu1LuzZX
XE3hIrXQZRIlxppbN8Z1EOhrxQwartlJiaUilHMfpWoQWQ1mqMcxApRzJPwq
iM+FPQ0AvxrGuXzgAYN+BZlr1KK7cqRBJviWEv2TxUOjgFShr0dgUISKGaNK
rUEceR2uEME2ubkQsAZIBSUFIS7E+tbeaTIX4/HuRWdPeeP59YsPN3TZe/Xh
oXd4cfbhRmihdenyeZMQUUV5C28uTa1rhFJjrQTiy7vm0bXxq0v/3Kpvd+Ho
82umORlyym3dzMSTyVipz9Pt0TJURzuo0HAqZ/n97zcLy5OuETveVCXE5Tx1
LeG2SborTXV8dfUdIVwrk9TmWxASx8SAkFGxe2es+aWB5kqkZ7BNJYcJMbd7
2dF3cw5HewlICSlrmVayfWEY8DUrcQmKAyy+XKMAEa5QJ4NREsPkUg0MIoSC
hCAYBCGFlMvj4mZ+YWOs/fydq2smuV7ovrpy+qcxBLotWa0Nt/opiwXSeGRm
r1gKc8w071ZUq7kNRt59qb6J0FMep0WhI0U8cSDg1jvtpB/ODyfMmZCUaqAk
D9isu6x736oE/40NiVTFsFpRI6cfUFaVhuSY8w7cZdXpZCQN4MZ6g4uv1Ihg
s6xG2MhjfZMbDYdODpee/5Bt7/GW05NnJ/qB2OyjQY1zINuZtQXhvqM1n8WF
pjx7HzbHLj7FF5byq23LH7+0Pnk3cHEwvN3b3NPaPtSmFctRlRwzQy6NDHZI
GKH0Hp+n1QjlEB+lZR3Lzs65jlhXiMTkpE1pa7aGpzwz77aCM3vot3Ll/aq7
DV/DDdUica0QbIDEQrFcaM4A4c1k28q0vmMQrueobfzcbJfLZ0a0LMYpg4Qc
VwmzdKbqxShUx+bDbLlYLKjnwaAQRvgw2SDSNcqk0gfVIpjLF4skarkFlUtS
ndbeo+2eJ8ttu3Otu4+thR5YKvI026SkHpTdShFfGbChQpDDv68Pi8zRZjkB
iOUPGKfYbNGgSqHbhSpBMRNAHFa2oz2hN1kt0hoBdh+u49Xdu9vY9Fuu6Nvo
Rn+wsvBAwDHw6hDTXSzBlI6maZ8ZxYWoUSRCeIxFhBMCRNzYIL4n+fpObmu1
eHKy8+m4tHOW6U+UN7ddLT3Gdia9/Tq5caOKKNafradHjjMTHfOPp0YOLrrX
ZsOzoeUvj0sLuxab2Q2L7QPe2RcT/o52ldMkEyhkEhZIaiWMB0BBlZkSihUw
AMA0pgsSlBUVWdxaHeUqDgIarGc2nBgb5goh6bcs/t37jQ010vt3Gu/cYz1o
EjfxhQCL8YmiQa/eZaS7Fa7lIpRqU3jlBIjwqzQSNltHcBNl3DZgt7fYMVIZ
K1qUoELGxXBSijMCWSRAhh1cjBE0cQG0GqVF8lp2vayBUaKpnljb3Gj30kzr
ZIHqzMi0hAMAjA5QZcVGdoepcMRAgqk2TWx+MNzVhiFctZbH44pJfi0grZeI
2EaJEAsqIp1dclQssypAMSBg1fDusIS1dxDt1+0LGUUgLROIFdomgvxdar88
evZUimka1CxMJAfEVYKaOrWMxzc2sAAOKKgqHL8dPTrrPum4+uW9cWTTM73i
GRvDY+bU5fvK6TuIIfrfr45urTvieWPKnC5HbM5WGUqMzkcpQx7FSRWuCDan
ew6nM61Rh90IQ5QIlSQL7Z7xPBpBVp8vMi0t4gY+LBJwwFquQpAecFDqxkC+
m6F8ECOgVAzEkzTWNbLqAE6Dmo3y5fwmnZ4DkPJbRFRzWSKYVOkopwlOrwQr
O910ziJhAYLauxJxEwmDAAl5TLxU2q62RwguJG3i6WUahV7u9ApGXz8NTvR2
znbqFs6AeJL0GbCxSff4ohjC3C6FOQx6i9p4TyI1nrSipNHB0/vZTrsrPpJF
KEyBARqlqK2LpNMRjAMBMAuU8VQEKJNJFTKUNsgsdpOvNGj2R/MDOa6jk2gS
YFG0id2koespi+RW2LmwRFlTy8K+cVopg9bQIGtAxUJQLxFhXJzgSBERBEo4
GLu2qrrvcG/y06eOk53Fl7upvXfZvqHA6GTp4nDs9YfZx79nXO6Zl2stB08X
H14DKq1vOp2YvJCKQIUJTfT0QwqKUXKaCylyaFLF6K2jebpzUGcIWbKBTNCt
D7svfx05PDsAEIS8XYCSB34FAPfrQFkV447Z2zsgpQTwmIlEjAI5aLczfTTu
HB1vhAELpXM6BSqd0dQ52nt05Ootlw92aXeSR4nkEg4N1UnZdXhDjbfEDaQI
OSLBcMRGwzQttrEksJ20eJIIo+9Z6+rb23PnokMHw8s/fBx48Xjx7ZuVkys5
X6V2KVRmQSCusbXoLEoVqoZxXpPEwNVGUQMCgkoFqTUF/ailWePsHgOCSWlD
HUtVB7H5EMgnHEoE1ngMKr3PlJiccJv9TMJknlsKLa9ICEaOiFUKLuJmwbgY
ldwVqxq5Uo6CXceW/o4Fck0GXO4134ZhWoVykXqhXKrCiaMfvzz7/b9dvXua
Xiid/XQ08/Rm4OOXldev+3aPSs1dAjdRWJ+MDfTsv1mu9PUYU4QGMYjZMlor
Cbfr6WQSBFX53czVD9937D0POXWB7lDz5mlbNmgqx4p7vVvX+TevJ8SQ0Tsx
QThMjha3UKa0oZJ8X2fl8Lwwex7o7Z28WU6uHueP96NzzfNP1i0daa1XUdkf
8PZOdszOxFvCgXyoa3oOoygaFt1iIYEi+oyXzPbSEkpD8jGSF0y5yOyQwRkK
BqKEJ9U8N+tC1AojmhiKe8z+UFt+7Hhj4XgruzCePtvXtU873GkRJVZSdUYd
FzPINbCcVIilmBCTNlAqiUIDKYQghfL1xZi1+9gUaYX8QTHk0cFqhJIrGV2w
NIEncwpIZ0oMhsbabF1t2bMfbJ2LMCjHcTFgUVKFZLDcTOpxQCUhURwxqYUC
nsQG2cpdgbFFZ38XU5qT2pWkywI6fO0Twx2bR5ZwxOQwDK6n1t5f9mw/83gj
roy3pTeDeQllSwgw+xM9Q4YkTbqJ8mxewNHJZFzCIyqcnIS6OvQ2cUupNeB0
mE2y2OR8oWtHb1PFxuMb21OMWd+7DacOJ6affyGKPTQq0tkUhFNAy7jl092V
lz8HMr3lpWjX2kBzr9tnU9icNELKXAHW+GWgcnXq6soKgQaBRKCsljXUiLRi
USJF53fzwfXZwvkrItJK0T4JqvJG9H1nG82TM4mR2ZaHP8R3HhJGgzlW1JgU
gfH4/ne/xPtmIATvmBttGy2n9tfS21cKgxsJp20YDsjZlIyvwtlCNRdWaowe
A86TS2jQP5hPzG3FNx6aRme9xRKCw3oc10OgHiLVhINpbFKW/OWH792R3vD8
cmj1o6O0zYMZqQa7zUepg2eGYtjA5/G9TUyz2qwDxD6F2aJr7mgJ9ZVahweC
UxtMriM2uuwI9Plm23Mji0IVYS22kha7J+fzBGIoo3OEMrfA5F5cz04+kiIh
mBaZh7JMZbOjv50F0aDRQXdnhx9fD4yuNTU1Wt1uw8CK2qbtuloPrF1ow2Gf
yW5IaHA7ZPVzEiOWtt0ZZuxA7U0pLYydIQlzLD8e7T0YcPSm9WFCJeKwxSwY
aCRsEE8qEN5nmZUCl1eNBSCtmKM3I5SJdEoMhIVBZAqPtamyO1reOIla1cGQ
MjfdlZjeSyT9nVs9hcm1tt3j9pOngchcYmwsURrLLZ/Obm9V+iqBnlVv85LW
gvRsj84+flg+fdy2fqnWIRYlBjNalQRw2lSKgF2HKFWxW9mZ6d7dz+3vJhaP
M5M7ZqWXZSSsWonKpJFazQYZdhteUBWnONXjyaRio67s3LHNNyyl6mKr5YHv
/pi/+mAPZHV6BRRA3DFGqeN7Ru2aVDmcHTemPbHJmfzpu7aD15mh2d6DOb1B
nd9Kt27090w7kUxEZDGa1BQCqRA55sz7R96+TD/8IbNxVKfH198sLpydpqd6
zblw9OB479kn0BgOWd2009q22b/706fp1x+GXt5Mvv+4enWIxeOYNWzEGADG
QJnE28p4K3EplVFpldHRwfDMgZmi8HBQ0T4f8JnEpIIQNMplHKyJiwkaSJJF
K1gigK/k8tRggwxiO6V8ZYjR6onGuzxpTZ2xARZK5E7KSBazre22yuOb7Oqj
dHE+M7GeK8x2zRx3zG/3PHzSevgl33VlUCrMSWfv9U/xuTe0XJJPeluy2cLG
yM6r782Bsrol5ksWmPggpvW7YcykFhhDpvLUtsVm9afM+alDX7Jd3xK2tQ6R
BsZfrNizna6Yl3JGmVjake1Wqe2wVhwb2Tb1TYkJ4eCz46GXr8avNiMPTw3z
Q7A2BhK0HBd6B1Slq/dkvDc2OlJ6/LL71V9zM0f6mCO9exAecTsHs9GUU2pL
OPuSSmtaYnHjXoNS5bZlmfbHjysn75zBLqHGarXI7RHzxOFcNF1qXpyafnFk
n9joODqPzu+mJzvn3p6Ors+3be4Obt4Euzz9p2ezR89NrYXY6stAto8hcP1Q
1+TL77Kze16r3aPH3VFp//X65LPnHRt5e97NceqdQT1sE9XV8DU1dTwVD2Ox
RDKOlqiGOPWGSFajViucbF9fJ2L3SJoEIFdoDRAhu1vuosNBe3agu3j6LLP6
sWvu2uxqzXUnly63tz7/MHjxvQFQxEZjcy/ftvZN8u0tQIPGaxRFx/Nrj962
BWKOkMsxM9j1+Ceppw/AMD0j0bW6rO2TjMVv9FKJ7aX45LyptSW9uGVOhBMj
aUubldBptGapuSto6V5TIDRSsAX712lDRu7A8o9XH//y58lnn6MTpfzBLlQc
AS0IhTSIh4L9WycqxpAaiGYXNvpPn/tLrcmdg9azty2jlex0dPP10Yc//nNL
a8VcCViinZ7ihK+3T9tsnnzxODG2ULl44mxdE4EGKh/vOTgMdIy4S1M7N69a
91dv/vDPU7MHLpuubW4wu7bYtbP67NkjX1fy7b++2/rwsvvi0fzeTyI57Sqm
xq8/2Nq6o2WnVamFGCFxt9Ecsem86lCUG2yDmuczhdmEOoA7RnBH3DB/dQ43
t8t/K+Y33sHy6rbBSaXQg0pZgazZQohlrrtSKU/KEkPSGldE07m/pR+bTY33
DT5+N3H+LNDZVlo+MXWvmvURv48iI6jOmo354jqrOr+xG4gsYQat2UcNHSya
BqYLhzudVw93v/+Td247MVAwWdz6CFLanI5PPdPa3ImB3OCj6+ax3eLW2+Ty
c8ZlsQ5HDLkBqBj0ljsDYycKIxXNMo7eHO1vU0bojtWxxc9/HH/xITQz03H5
iMqPRFM+TVQ5dzmy+/AzxvfokMax09m9J++dmUjX0XVo7mj+vDe+ml9593Rn
ehOKFDRGdfNkmz7Rkir3GfVUeLR56OWH4w8/xDbXwjuPB65flfYvgp19ldl5
d6k4enF48/SV0hKJLy3mR5eC4yOEJ2a0IOHlyvyHp/Htrc7dl4Rda8gYXSub
pZ01nLZqGdxuRlA9UzhZ3vz8Mj5x1CSw19XWyxsaREJ+MCwMZOCOxyfZtTc+
hwvkgFxvJRh0OXrMpcvW+Nqopq3IgSGcx5abuIRFDQFcYz5lCEUTpYLFl4vk
M/2r/V3by8tv3nbuXRLpTtZ9tVfIJ+2GfFsk3t+1+OxP5r7V1kRc440VRqOj
TzbPf/o09+4v+Z5dnU/trHTHJzZpimkeLbZPHNp8yeT46Oz1x9zs5tDzH8be
/Edx/VFpcXHq1a+l41eFk/PEwffphWuVXx1I5zNdk7Gxqdaz64GzN+WFwfD0
WKFv0BLA9UHpLVNpU7A5lXbAiEjKmr5of/jmozNe6nj6rv35r7G0SWOgg0PZ
zPHL5MiOvljRlWKJUg9FtSIEnt7p33n7pXV0tHNlsO3pce/7f8lNjVn8UPQo
uvr+aXrumd3lCLa5ZzemJfoCCUoaVVDv5p43GGsbMJh7mue2J28Z0epXePxJ
tQWWNKvc6TEaJuKV4KM/vHz1L9+f/fhjz+aCvrc1vL3n7VpBxThskZR7h9It
7b65ys6XF29+/XNufAVvzrudRu+wLTLc7vDHpPJ6bT0r1x+ESHZutT86sCKB
MMSp0knBQM6dyg6m+8q57eXW0YNI32IoO6kkMvFUOpZp6X38ovfR8/VnHyob
T9SUIzserxzuLz/70re2mu/291x/HN36iOnoWE+uY/MiNHfdff5DPDZodMXG
Hu1uf/rr5ud/Le2e7T55n9k+m/n8cfv7/yc68wR1KDpHK/6+jbaL55Xt55n9
zeTZduXs2lPISbWQ3oQQWkTnpeQUIrfz7FOztvKaxWzNLmYOf/x589d/QWVS
PvK1czI0/ebaOjgWiPgMftrfb8ccIOYP6vM+SzDsKXpTx9M73/2lMLHtz/hR
vW/8YWzh7VGyb5+AqPAIxeQK2bknXBkRKmpProedo4NoZ4GmFdE4jRuUYq5C
T6kFApY3p0v195txnypj6R6uWKJRWwQIh/XRoXL/5EgglqXEgC7qLMxuYCrn
0tXi6bunUy+uo0cXZleXNaKXG+udbUmT1gOpq7kioVEnFIbYKiPqz2iJiIjC
zCrGr1RptWqK0UMdU+2G9HIwZvG0qNNLDxNTlySB9s+Njz35UDh+N3r1KTqx
52zpL/cutk10Ll1vR1uSk3tbLaMHLlSbGIz3XV1Offpl/+P/1Tz6yJ3OdRyc
jn7468rLfw+v7HQcXa7/+Me3//6/Vp/+34S/3WUGi+fzQ+9+mHzxF1/vaCiZ
CldyeruBNuMwocSsEOPHaNpKmmFjytB9/S6x/iuIeTQeR3n6YPDiVFArEdU0
oWi9d8K+9XxCaw2abpMOyTd3WNaenYRcfq3Tbs639BxtDExMojQTLfucqSKh
J4NJZShiwgnKhBLeFqetkE9v7Q4d3Oj1xsrCgDZpNi16B/a2QKWFrxIKvmFz
murBBxy5SGCIko52b89R3tHZSqecqmivRGKSejwcgdWUT7stlnSpJTjU5u8r
N6/Nz7w86z1f8c1vKKUwW9ikj6AwxkPYTQqYr6GkzG1yRSmgii3g1jMRs3tq
VIjEQIVMKOQF4wks3e+xq0mtMzy/6R7ZU8tcjBatLHVPPX6y98u/jDz5nApO
W2JjAVLdMZnJHj5sOX/Wf/6Dp3XNkOvLREKLL2+WPvzr8ed/6Tp5v/H5z5MP
f1q7+dQ2u7z56vnL//5vX/72t8sP/7O1vGXsD7z/y/WzP/2P+YeftSamtD3c
MTIGO7S0QqknpGwtt9RKU2GditQ4I4bI/HT56FPr+k7+5Hjp/V8rm0eUSQLh
Mjoe0GjQXJ7UFShSSUsQiMhpF8+79CaTuRSd//Qs0j3jLjsNUUgfgtFSDiBU
sEql8Ug5hNHkSimNkK3bn50fj07NIAEdzBOgTtQ33TN4sqzMVORqEkOlqlAF
lOAyDheyAKhWHkrElKm25qnmruM1x9Zy/PzAHPemhjJSUGh3W3FSoYZrhpd9
oZBbTYk0LjObXSdi30Oo+3LitvabwDoOjNShXhq1aXG5ENULxWqh02XVBUwS
sRwTiUgj6bT6CZRxhvotjL/7bCE+9dy5/lFHeoP9PWOnV10rp+nxowiVQuSg
VU6mopGWqZnM9vvc7Mnmy4/Z9ZcXP/x8+uO/Pvzyt/Lay9Hdo8ryXmrtsn/1
qnNm9/jt+yc//+n4y/87dfouWS5uf/489fhPud5ewgKFW2KKZh2OP1DzG2C8
kSaFNCk3GIiQ0+O2q9q350de/3np89/Km1s7r15vXL82qk3qss83vM44XCgC
CPRGyqhSl1RUNGx1IIi4ntKKSzsTlM1BWlBnjqD7i7HWtuhIPz2w2Lm3nJhc
jS7PB2cnOy53qKzNMzNBWBQSKyt6thOfnJKb0Oxyp3kgbB4ZcneUJA1gfd19
kluNkAKL1uy36TQJyFPJ+2eWaaNZBMBGBiFVIj1DaOGaeuYeNVSS0haQzyPU
TbiBrYY5YoyLi1m0nIMhCkoii4y0eYbPEJVPDFQZSTNpkkmkHMpCUyRhoUCe
Qaq/tbDuCRizB7RgtCXddfXIt/PKps544hlHZbizdVrtaEMMboUu00QnQhlv
Z0d/Kt8+vbc8enRx9PL73UcXC8+v+44+uWIl3MHEhsqdezeF418nHv06evpp
5/0vm9ff9x4dbv7hb6tv/xoeP9a3TiUWNnU9ow+8UTUCSppTjQyqtwgFJAAk
4matztnd3rJxfuvRwy9/7Lz+ff/JY7WNSWQCplDJQWslSrBtr0PX6XONdKhN
cX4jGxbVcSyNsbkw055WqiWWom7haXex39J1th5rn0iXb0HCkR2L6krJ4nkH
EXYGS22iKhZlrfFV8gabXkmq7Ra2s9kczvVau3HDcAvT3MYm6kEjgIb1PClP
kYH8RW1yulcSpEm1ytXZx0VdEhAwtZGkXZRb79K6XKBOaogZiQauFHqAKOoJ
kMVtYgtYHL2Nz1iQUE/eGfXJgLs1Wr5GyFJqmsgYrdJITG6dtyPqCFu8+Ukh
5MNr2BwWyx52REIZa6yZYVTJTMznjZtbLK3Lvc3zB5WHb8niBCRnbOmQyese
2pot9hwyDNy2vTry8i+R3j1//05uY2b+xful1z8ffvlX19LpxMWvleNng9vl
V3/5nyM3v+S3n029+bX/2Y/p459Mmzu5ramxF0eZ7XH7rRxFJaWjCXWoRaXR
2HTq3Fpp5s27qZc/xlf3461OEyhSIACqwXSUHDArbCalrRRB7A5CiIv4IEI9
MA9bo7PDREuEDPssBE9Ec00mjVIDyHVcKwrLYYHI0RicMJqGwvVmYZW0XkLz
6sQcgIUquMpGydc0LbN0jKoqI/nRoqMrAjBspQqI5YPqjuTAwdAtuZgGIpZ0
nHbbg91t2iCtxAROq5RHyWwA15KgQK1Sa5IrYBTiNYnFdTKy3j1fkjlceJiy
tIXVEA7CLBS8S0F1TRKWXHZXxK4DuHwtKTQxQoxGHBG3nMPlKRoE98T1VTXC
ejYqEkuFcpUSM8aLBGHND1dyC9MDi5WJ589cs9uR6SFHIUeqw3qLxhB1Tb19
f/rhh+jSxvbnP/dMHbf2Z1PFnvmlqezyfvv5P7dOzHVPTZ9cvE3lemef3Xz5
H//r8pf/iO5sl45mxq5/8g+Ntj6aymweEm0dhgjiU4lhk02uQiGryOj3+UIR
QNmAKkCIFlKMSI0rSTfBqLhoTp+d2VXiVhkmJBAQJHFnVhuZcLvb/MHuDkwl
RiSwSA4pIA7EEeEKKQ1zSavE2hqnbQ6FmqOEvzHa6gUcNp/NUcoUkFzsblGm
5weSg8OQXilW4wQuI7SKTLcntzIZnRylukuF/croiyPPyl7I68GdGGzztoyH
mIESk3L59AiUwLUWzAoACC4iAL6F5MVKFswmT1ogj0mLQI3S+1UQBCpVLAXU
KIclGMlVyTiElMVT31ULWEpGAGH1Fi9IO9RKCARuv5gPKAQc1CRNN+eUrpAR
0gST1khnYub0YHBpsXV/J9GSD/tyJCPO7nQtvfxz++iiy2+fPNqI9k5jhkA9
KvIGUcfoYu/D99G+1fDAcu/4tjcWKHWXL7979fDTf9D+8Mpl5+6HP2YWl/pO
t4rPvnQfXEJGi5YUBQsJvT/tSFvDhYyqtaI261wGCBQBciXfiCIIDIkU7Gjo
1gKMYhTW6hHEyQV9ZjLlkINNcjvLqFNodSDKYAykxExKDFWKeYiRwVVxJD7R
afeUG8A62d27oupatuRbztf/IK+/i7DrhY21aqROZZGIWVxa8A0ml5gJMY1x
CWt90GShZBJWwz1CXu/SChmkhpSBYQ0gBNgmDDUJ2TRSlSgo3D0GLdAgUVaB
Ai5Wc09Q8181nN+CCJupv9PIuyOvvk+wa2vpOxRZh5saMa/EoQVVSh6OCkQq
LsarRUzVKhVsJTVia5NZCeMqlEdyJHwRiDeozRJcS4gBpS2k9QfcRkMwP93t
0mPpgy26Z0fPKMsbs87uab0nPHh+OPn6l9zKS0yhMoZxX743nEzb+wveUIX0
hpQAEOzpnfr0f25e/xvuKM++OD/7w9/CM5vlyyvHyrHVX1CG5BgkMzlwfbNE
k4R0Riw8lKTDdjCiQQEjUC/W6Bs0LhT3M5i8HtdzmKAeEHO5qgcGkAuiHAXr
ASCoRq01uEQCavger4LUA6ZmBYGKPUlhwKsMt7RrjbBOV2PKgoSEB2AsqagG
bGrgEfWCr74CuE0CkQjARLXoXbW+SaYVKYUso+YOpSaI6t/I+L+RNt2VSL9i
eHdUonsGtMEP8rQmri+sMIRFpIvldWkYG59AvjXGZUjDtzDrP/OEvyXq7iqk
f48r7hmsVYTyW9pej0cbrHi928kSAWyKW89VNGAcLoWyUKWAUGvUmFJDiSiv
w6xLMypEgiKkEMNVAr2b0EXaTPlxtcfi6x7R6gKAnZXfXSrtvEbkek+cbh3s
IGItiagvPzhvLo8kx3KBoTI6vMmNZMNxB+YJUWJSDXFtRd/S5cXy09ej7z9u
/PxvY89/ts5vmHsquYEWUI9xUSmhY4vIah76QM7cEyNf14qqVNC3LqPcXdQa
M3qHnm1tljn0FKl+QDJ1HiOgUlUZyK9BhmuAWJiaK8MAQogCOtTkIp1DUUpv
QDCuxNKkAfgYLmPLvyGRKhFdpzODmB3DSQlK39Wq7zECloxmKVnVvNpvEYSL
CjmoToIpqlDqLsFtaBL8F1Hdf2m8819rJP9VyP8nefXXIvgfIU6Thl+H4GyH
XWKHeDRRq1KLXAYZ6qi16KUqGY8lvsuqq0KbmiTsO5z6b9T1v5MCXyuttSa1
QExzcEO9nb7XIHsgUdwFJP8Ii+4IgHqMx5UrhKRJbMBAtZnUk5De4VRoAgq1
1JlIGVIr2li7tbWSPH8TO/7oOnzTevGifPqGDE5A3j5r3h2e2nFM7Me3T1pm
L5vH+7wLM91HJ6ahIVvOTkSamYAeQj0ElXfam2M95dbN5dGXP8T33rh8RSqi
NXpR+7g3vT2HTE1RVhYSruWEGYhXxxLVNn57B4W4GF2jMcisDEEJ66RkrZ7z
tQSuEsiEpOCuQHcHEAgQWS2OcRkU0MCA2YpaM3TbaoJxkDjNodRyRCGVQQ9k
7LucugcyRsCQMpQnwzEBJmlgc+tEDbeaVM9vqgGk9wFhgwTiy0Q8QN7AECzU
wBaxv4Ul91DsgeD+tyB0HxaxhFV1OLsJFbBuD91kEas9mA5GtRbcaZIxKp7e
ozDopRpKQGL1EiFXKW4UiKp4YI0e4dBOAYMLrThboqrXoTxcxgJqquqr/h6o
/wc+8m0tpxbhNCEOjk7NNjllpEOgJgX2CGjWqnCKMuMEbSZdrd3F7YfZ2Xdm
95w9Fu/dvSXPLwPXP/Svn059+OPyo1dtw1OZqQWHlbREUA4kZmQCGmiQCbnu
DG1WSt2lZsprMesAxAzjATOFwzKl1mLUIkYs2Blq2ZkeuHppaW9HQ4pAG046
hRAmRFRNkKJaAX9tDwq9UYkcuEcL6kTAXTVYrwtQkJ0T7jfGyykaVekhsUou
1dGYzQCZGbWNhChYLFPWkhoBgQvqiDqF/CsauYeSgFTPt6tZBNUoQxo1cD1C
/O//fUi0igAfKMAqjQzgNdZKoDtabpOBV40iv9XW12nFdyD8N2J+Hc5hiyTf
SHh3zZwqjKjWS9huk0hplXpISo/WaJBahuAY8WqGqpMQ1RZuPaHjIYIGBnqA
mWr1CoFZ3QhSVTodCyf5RrAOBBvxpgdq6QNEVEvxWSTRoAEapGiTTtDImOu5
RINNUY9hfAAF3S5c5cFMNrfJ6lHLrJALTYX9XZfXuYOT4+8/tC8t53qHfcm4
iKuQ1jdy678BSb8yXcEQmSmUFAUzuLAW0cKEUWrWIUZaDYMSkUAESyC1WqQk
KJtR7yhT44/Hxx++FhgcUpCl0NU21TfU1zZK+bWFAUJjUcCyBgvnLi39imzk
keJaWv9PHqLJYv42FIQZk1KLssWiWmlTjQHkAwAHEbFxhEebIK2eJVPVK8Uy
ghDLWdUGXo3BoTBDChVUh4rZEO+B01bvd4pRC2kXN+JYHV9110ndwg+HJti3
ydphERptNaRcrGsQc8R3UV6tsuF3QuQ+KWyUye9ob/tCXEUJqymKZTTKKSEP
pRpwqcQtk+pNQhvCsqANZlSCYjyKemBRCZVavl1ZazQ8YCO1drQB1T7QiGrE
krtEXTUtrdIoGm4dB6ZqcVk9SbEIYRXFqwdkoErSZIAlBiPtcmj0Rp2KUZui
bkAq0/rl7vaUzqI22BQkAREGo1yN6nAKIDGuyd+/ux9fWfevFdPdfsTDKBRC
IYcjBLlinAfggARUyv0Umu+hDQE8jinLrSIdD4uIbXoUJBoFsnoWh6t80MiD
2XjQ6gsafYQErxcY+HVOyz+l1+KeQpKGODQs0Il5RkyAYGICriN4VVLRXYXw
DlX7QAbdg6W/U0qqZdRvNIK7GM3GqAcocJ/WsbRQHYzV2VkPYGEDzL6r4Uq1
Kh6DVqsA/i2f40gDSoAm+V3Gy0oNWs3BJpWWpxDLDUQjwG2Q8PiEqA4VyUVC
IXq/Gqi9tadaRs5DQJFGA9qMYhoSmVyQ0QwxsBCgqm43lsLZGNwol9Xevk5l
k4BitknCxjwiFKknRbdJgQM1VsmqvpE23ZdJ69Xiu2LFt3zBN2Z5nULLAuEa
u1RAqqWEkmtGETEmsWogG4NrvCCg4NKoAkFhDJPrTSBuspPmqEWn0poYsq3Y
tTjXMrdk7BsKt9psHhpEhBo9CAp5mJIl0fDVIrGpk0l13vJRv9lvtmdl+YUK
DsBKqEFlqjPqahqB+3IFT0w8EGkkNEOEdRJNioMnUK2kTqr+RzdWpUareLJG
mFUnYn+Dc/jUbajhVilY1U28r28DDNLEEn9zj8X51sQTqQX1coCvFd1TOlna
zkTglh3NVZD8gU5Zg/DrGkVVWmkDJW6EoCaTBFFCfAXS6MRZqKxWjlSpKRYm
qWHfumTNfYD130hKZCNJIXCfMd5TNLBoqEqB1t5SgxLgMGo+LeSokSZQ0aQn
UI2aQ5m4t+VBQmK1moWh9TTDIWi2HqtTQF+xwW9kvFvbva/k3lFyH2ggNqYX
E0pEh4kBiUAhZJFIgwRmW8FbDOAaJWItVQMJqlVikZR9O2BDsMRKyIwpClMS
TrkYpmpITpOOkCvlCgQUu2N6V7qdDkOxcEu8q8cekrkr7ar2IomrxECDmP0N
DNeisiZREwvEuRqRxKVngxaZBoVIB5troIwgF5J9Y/RidMaPQTyxWqo1iTTS
b2Hqvtt+i5X1pK5R+OB3sgffgLdbxKpRC24L5h5QdwcR/xZA72nEtbjqKxnU
IOBXS4XVMnkTDnH1iBgQNXgymD+uplmNKvAbUlYrkQjpxq8w/m8EnEai6Q6P
Uw3KhLiC0wjWgnU1EnEDLWZJxE20jIVw7nPq7yE194T11fKmeobXKFVx4SaO
SvmAgB/I+SyrphZTiiAJ1wyzNJSEIhRaoAkQ18Hc2/lbCRKqxBwV2OTgcyW3
jdbUeCt9In6THuARCqFGxqGVtRaxQMnncbi1FPs2nTVRqMSOCqXCBzi/gUTk
wpoHeEONqE4EcfjisCJQ6iBpvc7KMLiC1qM2jwvXyRg+m3QKIFyixXQSJWEw
aa3NMcBr803NDL54Ubx8pCuVXX6HxlIj8wE+WEw5ZJQbNGgVSpIdKDp1/x/F
buEcx6F1+9b9ErPFGoaenp7mnuaZ7p7pYdKAGCyWZTGTJdmybIEtywwyM8YU
27EDjkOOww6e5IRz6J4P7vvqvXfrvj/hzSlVqVQqVZe099q/tdaUZrhNFelI
v7cmRqeqqGSVUt6qxlsQMYrFAkAonG0oZDTgikXJCIPSLqsMgTGWVuNcaXUw
5pe9QayEyxoZEsQR3m0t8Qq+BC24iXJekHkyLsAhmZZUkpFBLwIzTpDN2iiG
+jmbzANpEsQVJCrDdTWsLNGBkNNXjkoxKhwkFQr1hmh/1qYtViYGeDizSOJB
r7VeQSJhPoBTfsbhd7NlPlmNuINeTzjmCvo84RJvOiUmAyxdxrTHZdXPqeWu
6rQcK/fUJKTylJSQxKooH1epSpZn0rSPJ5NBVzDhqlDEAC+UZOSSRCCuKIla
WilxJjiXlAQVnMoIQnkDMzVfevDGod7tE3UdgeZWf1nUE43JcZJOlBHBGFNb
qUaTiVg0Vhr2ql5x783JK48fHbp1d2ppoqmxumlkIOgRKxVelaG6Dra6KZBK
Byvrw8GET5U5X5hWknQwxldW86EkLceQhA/iA5RYYit3YyUhMeUX6+LuRL3S
oPJpLx6N4o3ldEePWpm9OhVO+CE35ZQQIC7b0tXeRGUwXS0lvEw8IAhpV6Xf
HYs6Ix5BRYhIElBdqIeHJLbYL4Mp2uxFdagEl4pCJDsBn1KuSL4oFwz5shv3
eV1siJNdTsXNuKOKj5OiPkYNZHMdkayUNkVVf0BMhoSUoqQivoRbjqXluN8b
UOgQSYQR3MXQIZnkZSLo4aMq4ebtPgkM+jG3h0AQ0E3bs9rGHFiJkw1yXLyS
Kw0EE9FwpkJJBoJZ5ZcmuSz0gi465HcF3e5UjKxoYssTnu5GvrQhK3V3Ta0r
0ewJq650lAlnBMnrigaEUNKjsHw5T9aV+8vTyZoME+oQa5vqw96QGMA9PBmJ
mLwywMXxuJdxRyhvidoQSgQr1EhKLg27SivC3k1sIo6Xiog3YvcqRIRBFFku
rdocj6plZYGsdcdQZ5VEx7OmrMjpWiHEgqqEeDm7RGlZjzHqoiQJCiRgScK8
fmdZSq3fESvrTLV2Nntdbr9C+VVniHepXi5AswpN+FyELBIuP6N6iYDsUlQu
pth8YVFm2QgDyx6IgpwRgpaczqBHjgt8gGUUJ5N2ER4vJ9FwhAIFkVKyGPdC
aoZRUkTGa1P9qCo7/Kxd9SDeEOxBEZnDvEEkgiF+JxPM6tbNZtGn+giRhNNC
luqERxBTXjZc4YjKWEIW1CQWkKlsRxAJPOzmohzppgnWI1QJTjaCCwJbqnhK
kkwK54Mykwq4yxJqJpE1HU80KsT9fCQqlia97f3ekgxTpbjiCZcKQQ2VLBmh
y12UkiK9Gb50E+Nvlja1BQJJX0Z2pXtjZSlfKuHlS/BqSRf3A16fo6XXXhZA
4gORHTdWKlLJzoFwVbMvLEA0ywfDbIi2pzhnLMalKr2K4mUUxoWgIoH5IpSL
p32cO+yTgiElkq0GUU7xCx6edskgSVAhUZAlQXSJHh6lFErh3UGBVfxcyM3H
A4yHhIMSl5GdYS/G8YiHIGmMgmhUEjAni3pplGUZ3g7K2bIGM16WFlXaR4pi
FokCnwl6okG0OsK7wlgAdQis3UnYFBCPZh8YcmVreNythBIcSzkipN0TErJ1
O0GzTCAbAyTFKQYZSg06yrrrqiaGshhK00wwgkT8vJcVRZpRFDmUEJJ+JhmV
Yl6hMsb6k4KfImMBPJISK8qzPBcSfowJQywMeQWS81pVyuZRsjokoiWoP+u5
FcGSsmDar1ZXEpWt8sRSW7AuGfJK5fFAMqaEa4V0tnNXKVItlU4hnpDFk8Ii
Aa4qE2yqjnoFJRVQXIRTxJkSvzueYPiwKyW6PCF30MeGJSKsomVBMV6q+hWv
ynGijyvx+vwJ1atIYYVXSjiPnxe8mFfmXW4xlHYGwoJPYCXBxUWdMgh7MIzC
SQYnZYrkIcANIjxFCTTOYDSDYlQoW8YtktWKcDY3gnEWG6nXowUGwWr0oKTE
iBGLJZsEeCvqN+tJ1qEwrIjgtINkLSAHQS6U5AQ++3vFol7GQ3txKhqgRc4p
SZQqusIBd/arEkb1qC7Rjw6vdIwszIXcbo+PSapSoiYWDgVKIm4mLMRJ1O92
KDGwJmmKqpCXFiUEFXDSE+KCPkV1e0IVkkyLPl6IMG6cRAUO49TsyNASEg/F
uHhECcjZ8WGK6iptLE3VlsVa28tKg7HGarWytCQdDVX7/Cl/ab3ijnByAMpm
xWAwoQpqPOJPpoKxQElJRkq2p0eXR+W0LyV5IuVyICyFA6ynRuFdNpaG/Sgk
B6h4SM7EPNG6QFDxeoOc6suGDlrGIavWCtoRwuYEaRvC2VmW80RlNexVgh43
Y0JwM4sSQYrBALNgh4IM5mU5iZcpCOcokoBwBqFYiiIYkjahdiMI2Ir8ZgMO
wwRGMiiA6e0oCEl2CwCYMQr0WHGGIRCD1YfBNExKpKByIuPkGNHJQajdYnda
QMGBCdktO0mZzDYkRpIZF+sKhJVM3K9GwrGQ6slmI84psGTCT0VoIbtWledC
spJI0ZnyrK7CYb8QCflKAuGSSCDokSL+cCDgUiUu4PF4vG5XNvazbinKx7Ju
GFJr2mLpGm9JmStenaztra3pbp7Yt9NfXzXc214607n06mzvyUOhwd3ecDAb
JOSq0mRHaFMga15KoNQX90VKawKSArZ2pOoqy31+1FfrbhyZUOPuqlJ3/1K9
mOBirMijiCA7ZCdNQqQLx1TBHU6ES+rVgOwVKE5rsDJWLFsRslJns3rncEnh
XO5AXA0IoI0BINaGM04IM5oIs0MiCAYicB2CFCB4oVVAnB6P7JV8lCBxjPNf
L2KbDHhuIZN9Jgg6dWZBD7pQ1GGz01oA0xkZG+GiGM5BO+10lnM45XYrKsuK
GMURCElDBGqjCIhwwwRL8lkNOzEWskNOC+R0UqLT4a6iSwROkLK0h7ONVGQR
P0QqHBORnSKHORFLikOCCSVCZ3UFCn5GonlVoWgMhkGbQBAsAwskFgKRgExm
O0idT4wrvpSXViNEUHaHs5EsoqSTnmRTuCwTipUlQlH/4FRgeKXlzBuPQ31t
VVXx2t6mtvlWH8uqWYy7BEVWIhIPoYDDRHlstJpyxicic4e2i4JL8roTAd4X
9EmqLJIOiABgnd5FWGnU4cZxHhcZmnc5ZQ/np0kO52W+ZkiMtXsEQSZxr5uu
SDlbmjULtZbmpLmlRFsH6ROKsQLQzwrFR6sLWlTdtaacthLTQov+lSagr9Mx
0YZOh+CpHk1HnS5Jm1TUQkK2JAYILCgSYBiDOQpxmi00aLcVggLEsAwnCy5F
8vqy+kUF1ok5jQgP210CzoQEr9dPMgzmpniMZ0VUsAMo4mBxIBMhFZYI0jjs
hbJ/FAmYnR4kwOEyY8/OP6SYZdERp7NrhbI5SvZSokyq2WbOOiUKdkEm2kmQ
DEjzNoGCUA/k5hE67nByKAda1SgQDirlUcmjkiVxvKLWX1NSUtdT1jYV7j3e
PX/pQE1zQ11bOlUTHN3d7XWqbpfMKogUEyKVYVy0yjgq1wjeEjkpuUNOEkcd
EIR4nJTEOxnZwMe9bGMpkG+wG3NZcyGsA2Ecd6AQYnFbzQwAG6LXtw/d/yBT
3xYPWzdTutEttuuTuqcL+c8Xih/1G6735b/enX+1OeeLvrxvptb/587cf+7J
+felnF9HN/51d8Hv2wu/n9B8Nqr7pFf30+78t/vzH47n3x8uvNyjPzUCnm3S
PZjIv9NU9Hy48LVh7bEq4/YaR3MGH61GMxXmVH8X1L3IcqqSdVpJdLOMK+PJ
ZFxySt60tTrdlqLjgSyYrFYbAiM8ZEJApwMGGcFAZ89HYKjYvxIdEsDCHCx6
UD5EJPxed9bo3VhQpeVsQvazPhYjaAzzmEWbjhRgMuYK4Ljqy7YPMVLG1JSH
qgZLaQ5WOSLWrYRkxpsNCVHW7XeXlLChcln20qWZcHJ+m6s8VdM8HB5bjtaF
+w6OplhFiSZYVnIrjFeWCZGPxFjWSQgkGSPsWfbabDhusmBKMc4aNp8eIjJl
gMGGgQajWYcabZQDRgQKgf2yzgA1uqaev7Hp/NNqlev16RcaTBe7tc/25X44
UvS4V/dmrf6DGc13k3k/juu+22r8n1Oaf4xp/mNP0a9T676f1DwfKfpse+6T
DvPJRvOLMe3Vcvh6O/CnAd3TvuKHY4WfdGkfdOgXK7WXqnTPWozvNJseD+qe
1Ntvj9jOtUEHy7RNezZvvvimCUnbrSSBKnyWYi5HYjAzf+FY3cGtI6dO+2Kl
YrOKMD7WTTkQCSiw8Q6UI51Z3xbRrOvAFhTycPYsrVjMlj0iDy+qXtrjYn0h
T6JKLg9IPo7zOWERgnkQxBCLyBIKQ/uUbMDC/S4impRayuOyl3F2V9UM1gVD
HplmOLe0qdvXcGB428U77Yd3bnt0+czrD9tWhg/fOzZ9+ly43n/hwaH0+Kbq
kXZvwFMS8imhbBpzeSJuCiIQq10C7CjkACCKUqwYYWTK2Oq0m6UgjoUU3ALo
ILMGJQkcBj00m91ZYfBc58KHHzVs6aj2FO6tWX2ndc07O3Wf71r/0fja2x3r
v5nO+bV/43stud+MFf7Wlf/zzsKvtzFf9oBvTusuddte6wTPNlovdRlnA5Y7
af3p6sLD0oabFfnPO9e86Fz93eYND1sL3thSdLNfd7PTdipiu5Uxv9MBPIgh
NzqcR+p0Za3uqUcP0LZZAHPyBOMoIDiIrK4MH7i4sPPs6f1vPJ25/XD42onD
773WvnfP0LkRIRT+V7YlCY8k8hQr2GESdjCkLeBEKNzCEFZPCPcpKKc4EqQz
7qJ9MbzOi4RiDkVkPYqUKOE9HsbLcTHBFawRm0v9relAuExpbwyOdDYnyvwV
CVcmJNVVuGpKvZVepnZzMJJkGrvldI07pGRzOEeHsGiFZbi5IVESSFX7lUA4
3lfl9sXlMJ/Z31Db1eaIEUJzF8PxNInQfgTBQC9JumiIRR04bHazRpvBYtOY
rcWAw+KlBNzi1vc/vbj94Rk1bTrSmfdgeN3NoYLXtxV+MbP2wx3r399WfK8N
+nI654eZjX9M5f5lV+GPs5pPW/XXmrVHS4tONhaO1eg7ZXO7jDSm8OUa23yt
ebIaOLXF8KS9+Hl34ccj+T91F7w7XHC3reBCiW2lS3e51PjJAPhsM/x6E/9s
FB1pdfY9uLrtlccOwe/i/C6c4wSScrhqZcbfpEzePH/w5qX6hY754/OjywP9
42nB52lV455sDypHN3VUWCEbZzRYzCbCaiVRAwzoKQCmSFAy2lTSrEokr8KZ
GBzw4t4aRwiF3DJOJSGP1S66AZ5CssyROCQcg5NeqsaL+FrRxvFoXV+Kquai
IqKErVIcU3hbPM3Eqn3xJjLkQ6I9tODBvJLkc/qy1CF9vrK2USHtc3p93WeP
lPRVqqOxvVcvuBIKI5EeN86LVnc2JLicuN2BglbCYQKLIGuxQ7I4cL2C8Raq
Rtz56bOOM6c2lZofTKx+1Lr67d0bPt224ad9a38Yzft8Rvt0yvpBZ97vuwv/
mC74bU/hzyPat7tNp3uKj8sWSXBwJgetNdvtZt5BeUiwit3QkSw6UZV7r6Eo
i5rvhs3PB8zvdRreaje8NVB8tdn2aMD25074i17DdxP21/vYa2OagyvjE68+
s5KlDpjWFdtQs90KEzLlkRW+rL1i5PT82MGx5PjowcOjqfHWzpHGnrP98cqg
J0P17/GG2yQrYZdBgxm3AsZ8JGsTJEo4IdEF4zDm5u0hxs7TrE+yBBHIabOL
lC6IwbKfLwlQfol1UnScNbkUSPAgsYyR8GkSNe6kB1TKoVQ94U/avUnGW40F
E6C/Wog0inyCyvakcJkaSAuJWqcQsMvN7kR9VEnJ6VK5sbnOE2bK2+Ltc1Ox
MnfNeOPm7iYXiWZ9S7BanE7SaLdhgMGx0YZqIdiMYYCPJYGyq62Ln32bWVre
U1l0r2/N/fb1zwfzv5576fc9697qLX7Rv/7rkfU/71z72/T6/zi44Z/juV+O
FTxpLzgTNHisFlADgdlhaVAKAHmfPV4jBzkb686ZUgv3ZAqWg3mnGvVfDhR+
Pq67v9n42ubikwnrgwr8b7PUsybHkxH8kxHhzQbT3Imm5Q++Sg3MIVkzc2St
UvCrgZA3qrpL0v5gc3dyx7Xtkzcv9g70bD8zXTI5OHOxfWq2KZYkE0nz7Omq
WHsEpQwwaIFUHYUgiAnEDWYCdricJI3as98QMIsV1WGAhco3UaKVEsBskVe8
jDvIqxWCW+C5GOOhMLeEhdJMMoJJJbgnw6qVRFbtkQ66vLMyKjlj1c6qdCSR
EYM9YUUlazb5051hudYb8lLte1pqB+rkcm9pTyIat3mraipETiyDlk63CH6Z
lkiJpVwRmqfRbPTFbFnIYrgNzZJSpHhX1NzwcO+Rj/6UGZvrz+TfHNjw5vjG
H5bW/DC/6o2x1Q+G1n46uO55b86L+Y1fzqz/bGD9W90598pydgdyogBiWw9o
NRbUwmdMvOIEP/l6y3d/v/35G6cgyDREFG9mrROp4qtx/dMuw4su46N23eM2
3eFNpo87DD8MWD+c5Z43S5+PC4+GTDvHWpaff5Xcf4XkVEn1KbKPYySJ8Lhw
Lw+JJT5c3V7duWO2aXtjx/aetpX5Q6+cTbeVhzLR+qQ8dqipNFMpwgYa1rsJ
m8ABgM3iMAMEZIRJC2sH3QzAUI4KBncFcQ4CgzzqDTNewRlU4ICHkgOk2wtL
ToxwAh6H1VuH+PqJUFPCE8ejPjAeAkm3s6rL6XVbExEg3pGpLIv0dUcJzh4N
pSK+qBxw+6uoTVsH4jtrYkE14KXc1WSJP5EJxBkXJrMOEnM69HazwQSCaBaU
hM1OgRTNMzhI4VYva2NNoHbgvSOLz37yN/UvxXPObtv4bnfhd4t5z2cK73UU
nJ1af74t7/OenM/7N76fVf5c/uNh7VxjTg2YxxgQawEIaGyExRmBmd468re/
bPv5n4++e+uc32BVodxOunhSLTjVYLhVrX2zXfe0LedRS9HV6oKPB/VfD+h+
GTP/eTvzfDj0bMp5am/d8kefD1x6G0FFBmUQTJBpmiSdPoJTghyFUp0dQX+P
2H14sHWmr7IlObKyeXLMUz8Qb5lrbqmg+JESgZIiWZ6XAskk6VUoyWVxqDYa
hZ1kocNk4Ew61FNMmg0yZ3aYrTQDk27ES1i9sexPoqWleFJhvSJYVidIEay2
0ZGsQWqaCbYir0wypyvsTLC4vqrIWV6gRozJDOakLXx5DipvkcvTYkDlPDEp
nqweHVQrW4KbEU8VUDvcWr61KbMp4EQJAUOzNuz2upiyCIswsNVktaIQgHF6
TES8EiZCfGHfeyfOfPptaMfC/u7ct4dW35ld+2Jq/bc71706WHCrL+ed3rxf
tuX/aZfm+125324v+mCw8GJJcWlAF4YRzGK2Gk0gZPIQmAeGTo1an5xVzrUw
QEFxU8HG7lT+wbDl8hbtw9bcZ0O6512a6+X5Fxpz/9RT+MOE5ZsB+5d9yI/b
XO91wQcPlR747NOxu58XmxiwyIRYbIQZEQgmC6IgpjphiieALWcmRo5vbRmq
Y1pmO2vrNlXKQ/s2f/jJK23d0ZU3d73y/qWS1hZFdbjdtqQbluIOSSXEGOtG
7A4EZCEbRYGoBPkZJBkj2BSdEfBQCPaIdFWczF6a5HVWJQg3T/hTSDpgU4M2
odSQ8FjcSbPkMyW2eN2xhOjRKhFcZRghYucc+o7h5uoqtWplqLqnLtlRvXmw
mquuDLkJ0YOV1pbF/F6lKtg4u9OvJlxV8qtfHP/g59fvvHbLRHlBzAEYEEOu
mTWwbidtF43D7x1Zfv5jsm3qZGXeaxPr3s4yZ89LH/asuja0/uP+3Pf68/7c
u+GXPbl/n877fVjzzWLxux3QmWa4qRz3kYzK0WwN+co2lgCxbA3yCrSCoU6j
pdpevIXUT6S1133GNyYtT7utb29x3G4ruhrd+H37+q+GtX/eAXw7jr3fLz6Z
MV25VTv7zTezr31TbGWsxXa73m5zoLADBBBSpGTaKbokang02LitvHuysbp/
R1nLaHVbfGbPpne+eLBpeDxdDly6lhlaquEpwhc0cmyxyIJCGMINOgtosVkM
dq0OtehwzMoRVokkYlFXhGOTDOSTqZhKlEYckVIyUuFp7IlEY5TiJ0s4ixC2
Bt32iAq6K/VlA8HyBo+E51E+KJylioDSLLC5IVHZnNl5Yrisuba3vcafJOtr
gy2NAb7FU18f8TYylZuq2/sSiQp+YL73wq3FT79Z+PiXK3N3FsYOjSClcXMx
gBc5YT1Ds1Dr29sXP/shvP/MUq326cTG1wbXf7i46vtd674afemtobUfDhV/
0pP/2/G1/7m45v9dyPlfu7S/LOg+m9Ne31HYVe90E4SKYjSEOs1otmJyMBZ2
wEk3MuszHI8WXkxaTzdaH7YX/2m8+Nmg5UmX4X634dt+7dd7DJ8N2p5vZz/c
xr+3DOy61nfyxZ+bTt22QdmpwyhNZeHJs5jTyQku0e30cKgic3Qw4Vy+N73v
g7dPvPVsaG65fiS28vbM/iPL4c2Jqpj9wNmte4/uYmCzlC23WcHbTRSWi8NF
hpx8d0GORad3GvN8vnyWsNCwWYlZQlFt2GdJhawpj8XvAtNh2FNtDVP2UgVw
MYAHNSUzQFBxeCMkL4N+J0rhRgayuFkLxdFqjIylAnVN0XhVsqLRU93rats1
JtW29IxJmYDo7/K0bPLVtgVj7UJ51B2tVGMKlUkge0+UL83Vji0lSgN8IW3i
8zDEKJKKbsvt5MqLzzadudUSJq81b3hjbsO7ky9/OfbyVwsvPetd/UnXuo96
c/7Ysf5/LWz4P8vr/8++wv9e0v5xVPfh1uKbbdryWhNjgSWadFrttMkQshTV
YUXjqu5WKuejHdoXfZYvxs2fdxvfa9G/vln/arPl41bNN2OaD/utX07aPx5z
vbtE3JvR7ri7ePjTXxLDs4DJBhktep3BoTVY8wssRWZQ49BqjEhRFnWUi7IE
68X5O3M7Lh1aPHdDrvDPn6g6cOP09OxsRbP7vXeXLi9PuGLQ4r74wFDKiRol
0owDAF1kBnKLgPxinUNrh/JpUk+6zG4n7CU0AcXhY6kSP6zKQDBq9NeDYjXi
Eky0U88GDWEeDQbtHtWcSkOMF5TdUDSDqGFL51xt1UhHaVWTHIoFYoGOLY3l
o4GFV480TIyW1vszjaFw0l021hwsD4kS6nLaUcFIC/pgPRNpl3DSyLMkHYQJ
nOIYnrK5nZBN2ErvefHq2M33ysLuc72rHrS9fGd8zfvja9/pWfV8YvWrw2u/
HVjzw+BL/7W45r/3r/nv2eznnP9r98afJ3Pf2FL4apthsTl3xJXX5czbH193
oGTDvaYNt1oKPuhe/8vmNb+M5/w+mv9d78YfJ/M+aDJ+MZr70RbT152Gb7ss
j3udH474H41Ax6epbU8fzT38xg6HHXoTZDCY8swmkwE0FVhMFlinQwrNCGCG
Cq1uAEfcjNNrnzjfefzh/br6yvIuz8FrO7ctHizrbZroRoZGmyb2D3opp1cm
IpvltrC3czO4aXNtFEQx0uDMPiqvgNboeFyn8EAQt8sp3Esi2XoluQCRN0di
xV4FUWOmoFicaaYDVYEohfPN2eYGRZNuX29ZWQvRudCXKKN9FUjnwbmhXRNt
O3pGDndse+XAsQePu6bGpy9vX7x7uuvAkYmpqp5DWzt2jNAMhSlWejTsb6uX
AhQi2DmLSVURjqYogEYBxU2yRB2y68O9u9/6RKqt31+/4eHMusfj6z7bs+q9
iVXfzK7/6/C6j7Zs+GJo47+Pv/xr/5p/H835f/Zu+K/5dX/bvvFvJ9Z8tSv3
yczGj4YKHjfmfTLz8tcda36aXf1p55o/T6z6dXzdj6MFP2zN+bIn7+shzQ/j
eU8aN77Ykvtpu/bDduODZsfb2fA/Bmyfr1z89Kuuo7d0uXie1kwXay1FgEln
57Qac6HdWKR3GDCLzk7AWW+wZxJcsFnsLg1t3l7XMFm7ecf4/kPNXcfHr945
63YGgr3IrqXmqYOLQQ+R8rNdbTJnB2RTseB10x4PbNE78jdiYo6DNPtKnQ6y
yOsA40E7j9m8ok0tMXh8iOoGUhlQzYD1tVJrs1RX7u9oaY03oPN72hcOTw/u
8DVOtAVVJlUBbe1v3Lo3s3L19FBj+/LZ2dNnjvSNd19/dO7S64f3vnZu8ej2
3kOZ9hMHUj1Dvnrb/JXpS6cnBPxfL7PaMB1JoUYIwyEEBCk9RIFwfsWd+sMf
ve/bcaJO0b07uu6j7PyHNn47v+Gvi6u/m8z9cuvaX/tWf9q9+qeBtf8+ueb/
21/wvw+v/u+ll/86sva3Axt/WVr79cKGL3et/m1s/e+7Nv59x9rfh9b8dWrD
9z35341s+HEg/+NB7f0y/dtduV9M5bxXV/BsWP+wwfZKLfmox/5w2Hjw+r/e
WuWqHnGiKGTVw0aDVmeAUQNgM3MIagMAWGvEDTaHHgAhKwFB3molGpUTVeLE
yrbBg/vax5NnH8wff2V/99yeQBI8cLBk+8XBqOLyep01ihhUiZDHvPdsavLg
Fn+ZYAcsXk0eBOe6HIWK3UCiRhYokFwan5DjlEwVTovHV8ijusqARq0A66ud
NQmnL4NkAlBbDKxPcTXDrsZKpn5nn1rG1TWmKydSKzdObL9w7cy1pfrNDUNj
m165vHvp5NTui5P3X5uKNfsHj420vr7dc6XKv4vnohAbdXAxOxN1SB6CcIJm
ycFLNszCkjjB99kXPz3RcfuD0nBqPpVztmf1R7vWfT6w/i9Lq/+yvOGPHatf
bFvz/cCq77e//Ofda/774Lr/++Caf+5e88vov2b+54VVP/e+/J+Ta/73zo1/
m8j5r21r/2vHqr+MbMgeyE9La38b2vj1QP57C5onXTnfdOTe68p9rVXzqN18
rZm9udl6vskz8ejpwPHHqJ6zrzdBhVoK0JiMBsRmAjUFdlNBYa6GMRjsuiKL
TufU2FCEIgmCYZzxkL+jJ5UcLjl+a6FmomF4uHJ69yglUpWNhp4OV2pLLcW4
MyiQchpdbt0Ab5GTZCvH+mmrTOTivJ4VbTxlF1M61KXxOjUsqlHh/JDX6KG1
fqUg7skJNuLJGqJKAmq7YCYI1MWZunqysZxuLYMrMlxji1A1PHjozpFd5y5c
f3zy3v2DtWOtoxfmdu5eGp+p7x6Lrtzuvvr80sTds43bKx3bRE8t4w44aAZ0
BdFACJOCrCARuIzaAyTNulGHhKhQ6lpm1wdPAp2z0ajpZOna5wOrn/Wv/nHr
6r8svfyX3S//bdeqf86u+3XXqj/mN/5j3+rf9qz6z7GX/jm15rfZDX/Ztvbv
c6v/Ob/6H7Pr/2N53e971mSv5m87c/+8u/C7kXXf9uXcbDA/7zH+MFTwfNL0
dJvmyaTu3SnizRHH29PGqbNnpu5/KnqrjbrsKRrzIQ2TU0gU6Qusejw3T2fQ
W4xGS2GxTqeDgxyGC3YDYneTXg6v2CQ37m3Ze3Hv8NRCIJDONDjvvnV2eHpq
qR1IhewX7x7s2d6fiJtKVIcfMIVozWBDtNNb48UxL1BgKjJKtFb1FOGUPqLq
FEEvUQabx6SSdicLIBnAW25i6q2JZptSTcg+KNNoTJewlTFnRbtddePRFrdS
D+69e3D37ePDZ66evnxpdFdHY4V338Vtl6/ubJno75pL7X5lcvnMxOzd8SPX
z1CsC0UAEIBIwmSHLKgTVggSxRxWo402w9kPSE+SOIfXO0bfmWq7eo9Wwh3p
NferV7039NKL0Ze/27bq70sv/W37//jH7lW/Dq/++9LqXw6s+X127R/Dq79s
2PD7fM6v0zk/Tm74n1O5P4/n/XAii6OC73dv+Gb3um+2rvlu2/oXnRu+HFv3
pNL4zXTBV4cKvzwIPD+MfLzTdL4l78Dh/pkHn2X6jgLFYHYmcJGe0OsAwKAp
BsACo06jyYZ3hw6X7Nrti5qPfjl9985RgkCcGOfgOLfTOX2+Y+fdS6deu3Xp
/u3a9tJXPz56/43XJ7eMSJitLO11B1xRmpYUndNcEDbpvJZCH5VbrxZwsA62
WShDnsNQhJOFDGx0YgZR0ovkehQscPKorVwrSmslwSiwoI+x+jzWeCMVqqSj
jVQ6RldvS8Ua/WhE2z87cu/jldNnzq48OH3o8MjWQ5uPXbt47tTB3tOjK6/s
PX730IVXt227ODy5ow0gYIcMebwM63ZwdnMMtNOqTbCBNjPsgB2W7AIAlAHc
gt+ZWnTv+eAUe+SwH7EvV626qL78sCebP9f8vLTqs/nVP+1/+afll76b3vj1
9g1f7lj1wdjaF5Prfppb/f3C2j9N5X0yanj/UMHXW7Wf78r7fOfGr6bX/Wlx
zVeTG74Yzv9+MO/dbfmfThZ9uqPo2U7TnX7kZGt+V7d7z1tv9J14Stp89mzT
sphEhwbUGTwyJAhmq96AmoyAycjobYpdM9G18b0ndef2Zuyg3QpAhBVFIILj
HCcud04c3NrYpjQMVp2/f2LXru3DsYRkI2OMfnNfePnEaFyyyqrJB1niYB7D
5EfYQp9QzAFFcHE+btKRhI4nrH7IRosaSchLugpFzuANWEhWy8PGkqQt4dNm
0uZkI5wohzMxPOSDo1GbyNuEmGXo6LY9t08NHDx87OHTPYvzQwfn33i0Mn9y
fPnqoZW7e++9fqJ3LBMfSWQSGb5UoWjcozoYFMyunsOMKAQROMJgemc2UuhB
3IZYMScOiAIN1B+Jjb+34tp1UkGcE6nV9+tXfzDz8vcT/+oC3y3+28/zL/2+
7+Xfd73817k1Pw6u+mbnS9/NrX7Ys+6DXRu+mt3wZtfGx9vzvpjb+OtSzt/2
rPv74po/Ztb/crj47ycKvh/Rf7Rg/nTE9uE27PE2w2ILsfX0waGbz/iqLRjp
dHsRigZ9sFHGjKJVzwEGF24xFWiMOXlQfoG1yOyya3nWglqsot6AiCgF8Kwd
p228yomRONF/YKZy774tlcGSUh8d8w5URN1pVyBKd9YLRB3kx7Rel9ZlK3ZT
6z3wRg7OZWQNn5W6vZBDzRRpkWwFPsZgd+slQBOiigOZ4u6ky9ff6fHSNaXm
qN/e1sJUR5AyD6nUE1GOiIYgmgZ7l5vat6WX7h+69M7TqZNL+165+crr9zsP
LF5949L1D6+/9c4lf4k4/WjPwIW3mPAmVIQZFmdpglLsDsRiNztQOwxa7TwI
ZPsm46BwjIazLVZHo7S58bC35+GpUG1HCVmw6Ft1remljxb+x9O2l78df+nn
3S/9uLzqHyde/m1+9Xc7V30zuebrHaufTWmfb9/47cF1X86u+3LX+l+Orfn9
2NqfDq7/y5H13yzk/rCY++vuvK/mjO9vhj7abntYaTxUqps5NDE9d0ZOlxEO
B+3WoATkcesQwEjBDpLWInoLW1yMQ2ssoIlAzRxoYgXA76GTPpCr1N54a+bC
xb3VPIcKAudB043C3MX90YbG2gpnQ5ptGmvYOTsdKM9gCTTpgkvjBIrqM+a8
EqGIAfPCpg201RQiTbylACnMc7i0OKYJBEBCoZNwEULlOUVNMpVbWUbumWtM
xAkXj5RUWHoSeG2z3N7HV6ecqQZcDSLBsH7x9sWuuTM13cN7z0/vXN5z5OrZ
Mw+P7T97+sSrl2Znmz97cb5rb3e26h59vG//5b08K6mKKCRVMBBVQQfJYKg9
m4JtEG6FLWYHY0MgyGbKQgC2gk4jBJUc53seDLi6twVRfFRefbr83x5P/dtn
3f/2zexL38++9MPky7/MvvTT7Kp/7Fz9/fY1f9q38deT6788tO6ny2v+OLX2
x0vrf9639reltb8e2vD3paK/zut/mjZ+t8vwvAu+32q71m3fNTY4sGuFcnkA
A+xwwBQOEFYbZdKWZNOg3UYDVsZtp2ADIuRLlCXkxeWIPcrhZZJYVWJoCBhf
PG25dGK6qqFKoSSR9QhRV8vm0vjgRG1Dsm+xv2dqpKpECSpQbbfkr/OVJdXy
qFUGQMFciLk0AlCswhoHXoAU54pgLm8pRoj8UkhLoyYqe32GPKe7gJR1sk1P
I8VePxCGzX5ek6oRxupLystdFY30lo5wqC2UzVdLj++M7N1TsXhox6nT249e
n9w2cWSlp3fn5M27s5VTtcuX9qmRsJqkxVR464lGRlFlK81h1mgnuen4Nohi
ilkjatRnEzXoAlyYFWezCLJlV2IsgI15sM5hdy24Gu9OUtv3oZy3NfXSOf9L
Z7e8fKdq9dtDLz3Z+tLTwZe/Gn3p17m1vx1Z88Ph1T/eXvPDtdVfnMv56Hzu
d0e1Lw7nfb0//8fp/Bdjpu+m4K/GwbeauKMd7jN9VE/blo7uUZlzIXYYcsE0
SGCEicR0Ht7kQsEsWkXMxmEgixSHFI3PZ/CQmB+GXSKoeCwyZg8h5opa590j
1VtqXQ1zoxLIMC5nKONN1VWUVwkHbs5XTzYdON1XP7KtoiM91KqWdSh+lyPt
Mnp5TU0Ejjn0pDWfITRefTFuyQF0WQQZ7HCxaNUxfGEi4WSTes4DeeyWoKgJ
M+Y4n6e2YxWb3LEGrHMosvfMjv7R5Pz+8amJzVuOruw4d2Tvhx8fvPvwxKUb
By7drq8KrNyeuPDq6dKhTfMHp0XJ1bildFNPddPWdMlIt58XPSlE7WT7dqTl
KGclSCRrwDqrgwAwAIZAG+K3kdZsKMoWHQeox/QGi7sOTN4Yjp7ag9S28FTR
IP5vO8tWLTX/2+tja2+Mrn57ZNUX+9a8OJDz3fyGb/eu/+Jy7o/3C7/ZV/zh
Qu6rI8Wf7wTeHtS8NWy70mM7vAnpq6Cmmv2NDSk3QhhytZp8g73IYtBaObtJ
pDQUoaGBIjeuBa2FXk4rIDoG0TiFwohXF0hZ/H5GjQAeF+lnoEg69+SEuLyD
2ZJCtnfUujJknCcYmRkcjfYdGV25eTtWGjp2/9DCqYMlja6u1mhTaUD2W6rQ
ggayiEINJYU5QSRHRosYQ37UlhOpLgp7YBdpMtH5vDk/qWwUykwx0UyrBU6b
zuMGQ3je0ii/d7hy1zB177WB5x/fntvZs9wh1zXq+uYWElv65l+/tfTKjX2v
3Tv75IPWpbl9jy6eu3uy5+T0a29eDFW7p+Y3H720tWdemLk27QyG4o1OSmAo
DxpsiYhZXy7x4JjNpDebEDNkNAJ6I2g0wTYzBKKYHjAUGM16i42A1clgZG8H
3Zu0u0ytYE6N/+VJYdWuktUnW1bNVq55vWPDvaG8t7YWvjto/mhB/86Q7V53
0Z2D7Nk2eW8KWAhbmhP2jqAYS1E0jTBItuI6TAarRWvDjQbGZEKytDNpOSdA
AQbSUOSy2GAMlOBizmxWOVPEZSsJmeQU7ofNUZdNClh21Nsujgs9tfaSgDYe
xOM2jCVs/gAXj7mP76leubX/yPWlmrbW6vGK9ExJplTyy1HJjabTRModqK53
iqAmZM62XV0cMYRpbQi2lMjGRo8lHJcsMsAD63g51+HXZsRiSi6gYE0Ay8sk
jVv6hY44MN6pruyvq0/Z6xuM0ZS5tr+lqnfb9hvL4/euXXzrtUfvnl25e/D4
nWM792+pX+y+cqE5XurZPjRcH5bSjeArbw/G2jIMC9E+N46i/ijim/V5yhAf
Y7fyRaQFQIvNqFkL6XSkGRAQwAKYEbMVNUM2PWrJGmM2noSsQg/Dt4SVdFET
u77MVljDbxylcsbVDeViwe6gbbnGuEO0TgQNM7HCs/saOgcG6xiPIlsjAuyS
nBzJYgjhgDEKRhCDHS0wWPMMaI6J0BY5DCYUNquOApVzeJwgDxdgpmISKXTL
Wg9v5FPGiBfx+K18PL+/w/namc4dLWJlzD4wJEUS/pjASaytsz1x4sSCE8Hr
N9fuuHZx+d7dvQ/fGpppGD06se3KpebFka65xsaKrNywIF/sBjQKQIg2k+DQ
ERZnjDLUJoErx5rndo+IIsfiBTyeR6FFXraIMBb57Xn+cHFD2hQIY+60OboJ
rOtEU05bJG1u3LF5YH53x3zf3NnZV0/NdC5sGrqxcuvyZP/tY3vPnjx6pGd4
V8mjt89291Ynh6PnH69UD1eWT1fWbSWCfppU4fgWLujB//Vv5Y0RoMtPWXVW
f6EdtbiNOg63kCYdCOkxwAJTdgqHCMxhYwFWp5VUDRPIiSBaf0LD04VlJZjf
rosFwRI/ECXMNK1P2s2SC5BIyAWgGKnPlikjYLYADgAGAbvdZsuijUAxnQ3R
Om1axqQDTDrMlOe054NwnkDpeF6nLyqmYK0d1MKc1e0ywJyJk+whAPGo4qXl
prsTmW6FqW42P3isfvD1ncm9O0We9Hmdab8gQrDko0dOTQ3s2DO9a9jfjB1/
98b+aw/C7d6t22rLyzmlxBBiHSnJimIFkLHYZ9c63WYRNMRM2iYBTSn4YAef
GPKJMOZFitOeYi9fnAyYJNbolpD6FOCOmQJdQ566GB3QxVhDy6GLAwdvzq+M
tR9Y2PPoyaE7t/sP7a8+vrDy5MGrr7zaGY+19XkvXhl748nyuQejHz7bn+oo
XVzZ7PKqWMTnc/txkQ12+rdcmV+4dL7u+HbW44Rxq12wynYL4XJAkg6ymLPm
7CBsFggADVbIlFUtSBGU2WTQaUwObYHOUUSZLA67nnQYAMDstmqRIpPZYtKv
11k0eotdTwD2bKwBDGYEhiCTw2I14nbQgVn0lmKnphCx6CgLoIAmxJBrN2lx
h9VaZNIX6JBCE6Cx2I0OGHESvOCjkIomdmqlZuuR0Sd3jr271LtjU6BNNB3a
Z/vw05WjewdwEKbdMhqFog0VLqUa5ZDure1DJ5bLdvQeu7Svdnls663Tmwd6
GEtxzF/c1p/ZjMOKsiEFFst2I6PNi4Wttaw97bByalEc10ztLB/rTKSbMB9l
FElNUCI8oj0WcAQ8QEKGy6pjoRQSr6WctG761oWZ5cvJ6erWszM3Pn3vxlvX
T94/c3RlZueJ+Zr5vdX13o4t7oGL8/PH9128PdG9u7GstqRnn69qbqR5pkNN
BZy1zs3npkauXxw5PdZ7dmjH+VNSSHDTPOtiSAJwkAaWNJCCjcF1WV4zDGjT
WWCDAWXtBEw4qax5O2yA3WG3IHprUX4RkaNBzHbQDCBmANMZeMQEuC0YohFc
BVZLIZqvxYsLKTjPWGSyF1usQKG1oNBSaLQChuKNRkOOUZsPWDdStiIK1xsd
NHP01rHpgwszZyfPXDkb6nYdvbYjvMl35Xzrm1cOP97XuNwlV5fxJTFHSQhF
GQ6CY35ZIIL20u09h66datraWzkzNnjqwsG7b44cPzl8avrSh0879hyTHCbJ
oqul9VVhTQDQ+CJFpTZLADK4FKMCWxClyOPFfChKQbkZdV1HaUG7QrSW5ynx
wtKUnnQVhoNaX8QRjhDhaijOgIF08cL9d8eOHW89nG46d3by5r365vTo1V2L
V49uPjZ++9njvp2b7z4YXVg5MrxzbmQL33+kdve+jqpyumd/+6bJreGGNB9y
i2lPqK6C8POd9/b3Hd3j3+rbsjwmORNmGwUIeoAwaG0GG2YCrVlrMBsZjRM0
IqjVTJkcRDY52h1Giwm0YHY7joFZxQp4tsWZOYuWNWgAfT5cUAwCJnuRvkin
1RTmaxhDka7AUKwtBrU2HQDodNr8jZo8HagzbVyvs+ltRRqI0mCYzbx4svSr
ry8fvTR28lHVdx9elmL0oYOJIMvWNrl7GlxjleDkoFidCEQYByMVnXsw/vDK
YZrxsLXYzXvbL396/+bzr9qHh1tny8+c2bP7zL6Vhysn3lz89NN3+EATyphk
w8YAVuwOmBVbfnNZUUWVvTpkb4rblLA7zJjYoo1scD0F59dV6nsqga0pQ1nK
EKGMcbWoLa0PxWgCh2XSxMkWCCraenbPqfuv1C1PNu/Zd/jkUbEqMnB25uJr
V47d6Dz35OTx5f6t+zqWD0309Q3WbApW94b235ubObapYZvYeGHn9NKcv9wv
lkmdY1vYjLdpONp2aCx9aLT/yrnOY0fFYFgnWwWzyQLo9XZAtBoterseBMKi
0QbZgSiAUzqrEaDddtAEOBAMF20Q4kAgDIOBf73HQqPV2zXF+Saz0WI2FFg2
6LR5JhtiNhVbLDpAV6DPrkRjMVq1hVnlo+uM+iKjKVdfuNaOGmCKNY9MOBaG
Au093mADsrgzZoJghgNZGWVU2CmxzmDCKdrdaQYJiA7BUl/rSxBBjEZ5D3fm
zolTb608/OTN3YeuuwABFtlT9y5OX1i4887Jw9ePtk9sonFAovJxjz4cNgq8
KWWzJyCwsx4b35qc7W2LlSdFyFxKbPQpa2ocOS3QhlJXUaejuF4wt4v25jJj
lcKUhhgeKZYtWjuh69w9O7dvf6hO6j/S3TW+o2ST4Joq2/HoXqiprmGqse/0
/ukDI96ailffvTJ+dLRtpfrxF2927xhN96nN46mB2wc7T5zILE+HZ3r9ZQpX
Twycn2keLh0+3N14cG/ZzuaqFGlRIgLtsuOwjdTDIGhCbSbSYiaspkKbVqsz
6PVWvRkwOnArYtKYrWazxYzZIMjuwO1WsGBjIWg3GAvMxpziAoMGzwgFRqIo
31SUp9XkmcwFRp3WarPYbBq7rsCCaW0mk9Gc78jmYJCgrA4Ss5KAhcQAliac
/oHe4NCZ0swYsqVv551rOx+8FR7vYlsaEx1ViJ+Emqvl8n4qqUoeb3UF2XWj
q+vcJbG2ETKAKIVM1yUSGW/9UnXfiXMzy+dAh5Ezrw84CnFCq4pAtRFKGLB+
H3R3Pvn21blHd5dOnxmX0uHyBr7aub7UkJOhi1vMOa2ugsmgZX/KMVTl6FTt
A3G+3AXVRDbGN9cHJ3qlpvrx24tzF2YqZxtrjm4duX5n05aR0vnUzXcPP3r/
6PDlgeffvH/8+HRyLHn81koqVTo5LzXOpA4/PXj5ncepXYNDK7Xpna1Mwt/U
wYplWKgztvnkcNtYCVtB9J7uaT7Q40mGGDUKMxAYJLGIGwdAjRbIOqherzWD
Fp0VsJqyx2jJN2bN2m6HDTqtyVps0xaCQDFo1+O41UqJ5kcPGzyhiM1qNWgM
VhNQYDJQMKm3m8wGU1GOOX9NsZa3AWaqWOMO9yoltWVEaMQdKRua3TF9/sbx
uw/e/fbrz3/46pOfXvz4P/948cuvpx/cefT5J5fffn/07MXrz188ffHpvptH
Vl5/feHy2fhY1SufvXn+8nmbDva6kSDPjc8IY8eb548dr2vttLk2gKbVQWS1
ChdGLBv8xLqU19AXcR5IgxOV0NEK48OlisM9ibNNniYqf9y3scVZ0B4ujpuA
mSB5a6rsvevLdw9NvXHj5uWprqG0pm4o2LHUWH2oNxWN1PZXhw/N77jV1Xri
4ODxM0R/9e7rh7cdXiiZDD5+fqF5pKt7vvnw1atyWXXQifbu8JZtiW0dj09f
6d2y1Nm4tbRnXwsWUVgGplnel2S5Cl/9vgqlOjn56vHxW/fquiddpYm69gFX
ZRjuaQVwwWSzYUabhYdpGgigFoMJRCG71ZFNOKQZhgwGC5gNsozDDtsxlSJZ
V9ZorbTZBoCYUW9DCDlGsD7JWx/VprjwwFR86wGifdOxV86PHLvX3NzbfuTo
4tV3+6YXli5ffPWdJ1ffeOfWux+89uqVZx+98uUvX//45z+WTh399penv//n
P778y09/+o+/fvm3P5798uLO148/+OX5xI2jx87O8qV1RgMMEQ7EqUkngNmF
iprp1uZuH4JaCL3eZctRICMdpnoyZGsC7x+s2t3pnYuJKRU61mStJskStzXI
bihni1t4TQ2oS7tMk2XYmST90YneS9smLoyWLm1OTS9uXbxx2dfeVR1JR7qr
ElXlW/d0zFwc2v/m1StvXug711t1aOf42YX6mZqVN1YO3jg3fGDuwgdvTOw9
vnm7J9JS1z47G+ypruvxzRwa7d3dVjkTW7g2GG6vchMOAkaxGJ4MOdRaUqoM
bplsS3dWNWzf0TIxHd5/se/GA7Z9no4NRnurfbE6NOWrGK+PxcK2VDzTGeMS
AtFZjglOjcOG0zIYi5k5v711SPY1o1xd5dCWkoEth+5+UL5zuba1d+ri5a6V
befeuLLtyt2+88dW9i/OTI5npmoWjhwdmZ+bv3pu6ebNM48/a51Z3rpn1/bD
R4/fvnHsyiuvvvPg3kdvfvKn9777/PnZq3N/+vn240+evPHs4v6Li68/vZ5o
b8VxkXeimGKWwl4LwcqQEbOvq02poluGxUIRNnCAMeXeWF/lWuiu2aJyCwPi
hU5lX3tgT6t7ajMzmZLi+vwgnNvN5C9U2nbVmoYkMMPKuzKhrWnh2r6x9y8u
Tw9XHJ7qvv3mzdldXWIy0z0RjTelEw0Dm/pjmd2bT94aS05Fpy50T5/f37W3
b/7a+JkTi90LrSdPbd3VPzDUx5cMqr17ppeOtlZ3Ux1jwb7zi3NLM2PHNh98
e2nwytmqsf1iQxz0I4QVN3gRmMVsWh5GIbK+ad/925sOLXbf+2DXndeiS6c7
732y6/67HftPlexenHvjvQvvvR3ZfbNxZI7IjJdfvVexcr7z4bubbj6Ze/f5
wtvPJh4+Pvb0ra0XL587t7fl8P7Nu3aXN5XXNzW17F3eeuXiyMjueHldOJXo
v37y7PvPbz774fKtE/fePXbp/6/orYLjOtN27ZNd/7f37G8mEzLbYpaamZmZ
1aTmbjWppRY0SK0GMTOjxbIsy2xLFhvDMJkwODFT4mQmsw9/fWer1qp6q9ZD
93WfPO+Fa0qz19fYEByaGr2yc2bzTPe1mUsf7DdNd7tbDAK/015ahlGYCzls
QaGOXV5rKdNKetqcdRWAvHQiFZx8AGRH385Iejsn6wg0/WR61qmUY0fxJ94s
AL6DBP/dKT6ssaiL5I4iEs5FfauU+5c21dGzpQxC1jvB9P+vDvv3bfPJPs07
g8JkLznLTz4phoC0FCA6P9PHI4up4PKI29Rqo+tJBw9iA48SsoUHYnAYniTE
FvDhFVPFTLPVM+z1tTQ6u2OzKx11I52t3RX/cwlLiWxgoYbMw8tYBTx7IctM
HJgvtTb5gy2iiTsTkztbSlsRyiIAavRoWF5y8vEUQGr2AYLisnM5QLSGJFNJ
iWJaYLrSN7PauLghVmm1Hb7BnZv+3qGGtSvyvm7f1c32zTu2qc7I1u3Wy/e0
NbHI0uTA6kjJYLV7bs7VMmGr8Gr5HLFB4xzvqp9ZUVsCMqUMmgyTuytDZ1eH
7u4u7H5eXN8ocIUGJ+rtQ7VDawt7n96cPThttnlpsToRjFJ54OooZ+BCdGqp
JVJhlqnztSazK2xhF0lxTCmAWYAhZsJpICwbBgQez8o9lJP1dtrhv+e+80Za
zl9BJ95F5SQRsJnKEycDJtj105VX14Yqq+rEWECYe6yOlCVLfdt89H95AW8N
qY6v8d+eNB6rFWb1uwAtLgoVkmXmQO0iiNOeI47YTaVFBDzIXC8SuxRIuZZb
Ls4xS2zNxZhSNs4kN/s92s7y2sEhX5s5dmbY2l6dGKovDLoLhXwzgUEipLMU
yZevRu1aBZKDDVTztcOJ5onG1fV+V4u90O6oHS4TBATYajOIRgAA07JRuTlQ
0HFQ2qnMJDTuGFiBgJEEJAyeioPKtKriqF7VVCVuisiqdcr6gMpnU0fVrsFh
uTsuZRPgXFR8sSNxfr6iKlJRF2f6tLYy49DqeE1fl90XdYVLw93BskCwY/Pq
7N765MW51r5ulVcj4JBsUUHL6dj01qUzH2yOra4RzQa9Q6KoYLEpGKYUz9Gh
RXIsGA+GgbJzGYBMUBoQk5Wam5WZlQvKzUlHpxP4OSkn38zBJKVB0w7/11+O
Hfq/J0797xNJf0FD/k8R+hg292QV+t0IG9Aa1s50ljZXFDJIrBI6gXLiiCD9
L8XwvzczTnRrDq2qT3SXAUq5oE51dqcxOSxDNGlwIXBWoVskZCJBYgJEYyBL
BSgFhaaWa2r9JJ7EWaHXl9iKWxNog7xQy+cXoeNjgeaF4c7ZGXe1LdBuj89U
1XYXsYVwlwEu0LACNUG23WotZbYuNAc6mv3Tp8NTgw0z7fYa08BadHKlTVYq
LYyrXB2G3IK8d+icfDGIjAEATFIsGUQSUbkaNIFF0AfoBC1FKMfxhVAKL0Mc
ITgrzVwrA4xJY8kL1E6+VE4nMpAiNEghgdJYFK1V7XTJLcUBrYVj8yhCQ13B
6lqLuZwiZCnZ6NKedtfYpbIWf82QY/nadP1Ak0dvAoALtB46R2/gu9Tu8VZN
IICWKfEoNIaH5ijzQAxI43AHWKM5AchKSzqZijxKpsHJMhhKDsKJgRnJf88/
cigt6R1A8lvggsOg/KMl+elyMkKYk6YrSBGJcwtliLBDgD2VAwO/o0//L2rS
X72kpGr5kT7lseVI/rie2GlDhmrVo31N5xdGwz6/1MamE7MNIU5LX8tBa8tr
NKGzw96u5sDcTGdvNcmnjs3F8XIV3mCDQdFFEZmuShsbiWtdXmsxL9RhHRtv
p9PhWj2kYSpKq3TW19BgUBiZh1C5xNVjPeULi64+T8tEj6V72B7Vxxa7Wib7
yEqkMk7TNjXa4yqeQcD3FJNtLFetrLDJow079TopXQvnuQhFUQPF5cQxoWIZ
km420d04HAeVLecVcJFsGomk45FZCA2XTKBmkTkoubyQAKBxFKRiuYGK4uKY
NIXVa2ztGN3/fGjxgsZZ3HjlYsf4rMWg4WnIPIo40tncOd2mqTK3LvYpKq0E
PoWMSsnDIxBiPh6epaji5eUA8vCpJzOyD5AMLCogqfRZIJjEqDngZF45zltR
iiqgagFJUnlKSwlmvkEw2Vtl0CrqcNmo/DdpWccJh94kHvsv5LH/Jcz+iwz6
jg5xqJLwrpudvKDKGo4Dbl8c/GDnys3Rno1qB9hqCHYPkhVsT2fT4ECMJtGV
NtnZPlPzfJcgGpWbNPo2umd+3O6tZinEOC1eF1aZmirVXZVSk05llrXOXuIy
lDZnTtNQpy9eJZYC5CUsIZNMzc2hI4g2FV9ZnG/qU01tLw2fmebrxDoZydkk
UgWLjE2awHitprZPYSiSOzHmepenJVFSwRZ6hZbx8sqBmLmtkafVW2v8DLWu
vC0ir6mgNnvrF04Xd9cpgtXlU1PFra1F8VlTrLw4pB9amo2GKzQsiqPI4CiU
yMuL167PnrlxfnxlMFRn7Lkw3do/LC0sykaCHE6nLOjtDbuQJAKeJydKeBKv
FMcjE+IGbZVZ6fGAM9LBsPRUXEZmfgahMPUkAZ2u5QCRyScykjVCGSb3qKES
NbbYUeV0cYHHtVRAh4lZp5FcG6+8ca5tLBHU8bhSWB45+f+QoEcIaW+wKX9B
kN4U8TIlqKMC/FEn6khCcaTLglooU54pxs4484MdTa6A0TLYMn9+ka0u0duZ
bLvf2DIo6Wr2TqzqW+uxMmLH1ZbopYWRpXaFTCcJ6UvayoqdEoYBHWyV9F2Y
HZwZlNAgtQ1FgYHieG8ZFQ1k4LLABXmMjHw0DgfMBFDAWZyIq6SlQmZTMcvd
Ap8tMRX1DLY2LQSnrvU0n59XtCVK4l10r1RVqLOVBfVV4o7l5aGL52t7e3o3
18bX7zWcu9C5NNSxer1/ZbJrqaP3/PTk+nL3QLvHonfbcTQdX87RFSLI+EJx
ZayyZugAfs53X7s2tjBsVYkUpcZat5xGohegOXyBSmO1+uJ1IyujXbPDDdOj
lVEfX8NSNYdr6uvEQj5axAATgWkIFopOhTEJ4hIH1cmAyREkpeIU4G3oiaOg
U28imCcrrTIdHyzJTaXkHItICybjjqBCZiMhhuPymcnK4d42ZC6ECHiHBvjf
CNBbUPIhHPqvQPRhFDpXLQNEg9mDPtFiZ1lvdUNzTZTnrRSEYqfProlsBgaP
Lna7FQPz1ngPN4DXDdbbB1cwbA1RRqobMooNemGwjuVzucstCAZf4S2yCtPZ
kfLpM+MKKd/X5raOtbUYMUqjgMiB27h5/Aqp28GyuWloEEhdo3dF1UQ+uTJq
qBuK+Idj9ZdnZy6ftld6K+M6e9BQXlddXKW0RJ2x1s7C2rKBHt/4QmXfUl//
cEe0LdEw3VxS624Y6asfaw8YDF6dx+1WSgx8h9Xhbon1n5ud31zvHe9uGG1o
HEq09dRVlFfopNZCGSsnX0AttIDNckV1m3dhJzK14+/qaelv7T0zF2ys0QeK
7M0VDi+vvMYFtxMRwKwscE4uGsiWYvIZmc7egK6nGyUQ4WW58My3sk+8kQ04
kvnOoaRTJxnELEhqMivzzXInwW8zdQhIi9UcOQJXTs1w6tO7DAoB+iQu6f8W
nHxDhHqTyTwEQAG4ycfhJ04xISkePsTGzF4MmRcaGuo8flmZpu/swkBfrdLn
q57sazwYI81jltJSktJtiVbVXRhs6O6E4ZDqiLa4tVhTWVmSKNP4SBQjPVYp
JZGQvu5E82Q3uUgTbG51mfgVA/COhdHa3nhxNX+02622Ir114mhfi85CL4uJ
ymMhI5vLp+UJFWiFVc524gVinKSQReXkKl0So5YbjFN7ZyvG5xvLQ1Qat6DE
m68vwVG5BBURShUj6Uqnrghjb/e1TM2XF0mMIU7fVPTq5cn1hf5r4zWuSOHM
xRF3KEYGc8DyYkJwItbb4xiaKO1ZCrXXtK5N1K9d7pq5wpMo6VW6lulRpd1K
ibDcE9X0aMzd2UPQCXD2TiCaQVPgaDg2QY0vXWg7v7fJDdbCIMnAzDePp71x
OPut9AP+hJzIgRVgjqez4CcCQvCF/qrx4e42f6RSR26pTG4ygVqNMA35XX7O
W03MQzL820EpeTas5EMKKOlpQmAWC5OqlfBqKspDXn9XIBoYHzrTO6iUYkzV
Fm95wG7XMTV4QWnZyOyk3u1zh7SFXobcICP7XCYzi2IVCEt0KIUcKTFgMRSL
m631Ke1tVaUuF4/AY8kYBiq8rNbQO9VgV5pobLor4R1eGujq7ajoCPntzmhL
acdSV3lT88DaSnBm0DfckegYElo4bB5WIpQi6ACJSSdkS5kiHJ8hCsQMJbUm
maqYz9YYjQyBShVNWOsSvJZgaU+VU8CEWLFgLQ2MA5BgmVQ0mUFiG2SljW2n
z63u3e64vD+/9/n40mzNUG/Pta2GM4uVk/Omyog1VErlsx2VYXWVlYzmYDwe
dXupY3LJ2FpfWCxTOorBGKRIiEbT+RJXiTwcKKyJmVtaMuEEAvxEJuhoUvqh
7Kw3gCeOMaiwvJQsAzgfj8xTAbIba3RnJoamhjqGK7zjEuFMqdHGeLeW/UYn
8cSYMLtXV9DJRZryM2ggkI6PCMRlc4GStYnR0WJ7r6hweHmjiFtKFqENTVXn
9s4OTDcQNaK61VZfay2cIUBg8QwNXuxRl3VaC8MCllum8PGKKvVCTy2DSADC
C6jMZHeYXjfSDkXq8ZRsBiFbKAOI9VJeRbmppjhWbbiwlrh0taOjy3F5Y6q2
e+D0TGxsKbG4c2ny8vnVSxMXJwdLAzZLPB5vapEoDYmuEX+it8ohrI5XdkyO
TcxNRGLVHctTkyurC+dmJudHF5bGJybGejvqJ+d6AmPX4nNX4vW9La1zPmfV
uf3z5/ZuTy+eXZgaqK2LN5ZZ/FaMtyM8c/1iubXULVQbdAq1jKPxWCVCfjaK
5h5bsI5NK71KW1M326SCGDDliQgYJ0CbDLK6aPj0oG+s2zW2JKkqgYvy6cDj
aRmHCCwQ6OQx9AGX0sWwtEwSFYqEpEsoqIhT6y6Uz4ed00HD9fHyCZehBPOu
D/q3CPntRuq7MUTmIOpUsCAnIoTFTdCV3voaf8O4wTjaWtPhDNsaEvZSGdPh
X710IR4qUfFYdVPTtfUJXZPIOj7on7+ikVuxziJle6vcQSoQ53g0uUoVm4jG
QvNh6EPpuZgUmZvY0uZBs/kcLVouzzHWauqnmoJjwyWRyvL6Fjic2NgmsCVM
Ube2qywWEkhNNYbe4d7zq0uJ5tauUkfUYxmbSAxMLseiYW9VdUtV1GCSNXvE
l5eqL1ybn+hpnKpPNDS228PhOkdJW2ObsdDUNxTdfW/zxr2vr19dnVnquHf3
+tyFqdOXzy9fXA6FSy0GlUAk4atkkdE+jrVIxCFA0HiNXgthyKh5TDQcI9PS
TIFyY6KDp5LmQmEAKgYipsEhFLJZahsaT6xcC85c07U32hpapN4qqo0v0UsO
2g8DJ1CwZBwIwuPRy0dmBWU+uZfp9Bl4UmpFpSig1gj5RAUdEleR7VJIlPWu
Bf92tya/VZE/LM4rJyPK8PA+Nn7CTO+38i6Eyjdn5ramF8/Xj9uMIpYU23d2
caqvuWHY2NIZ0HhLqqur8Hquoiwc6Q4pqsOhheXKunoUmQOX0AB0AE3Cy2dT
CQFaEgeelcvKRqWRsg7DYKkYETwvNc9mRXCU1N7pUm+HfWyux1sTl3ts3U2G
lfm6pppIa0d1T1d3+9jkyPh4/+Lk2Or18YXzdYnY0ur88MJkIuBfuDjb1hvm
YXREgNDKxPcv96ytzfUO1OyfHxpaW1mamyy3F89cadvZXD3TGEyYcQNBabVK
qLGIVDwOrgCFBAGRqdk52Wl+v6UlEeRB0Rg+gMCXEYl0ut3E9lrYcpFcJyNS
ZFyhjMjhQ1kavlEqCCrVfSPGzlZ7S7neH7JHqsyh6v/ZtwjKo1q8EK6IWADP
P1SQ8c5JDigPa9cFJ0YCwxO1zf1iKTTsoNfVOpX2qsYSZ8AtLXIwnL6THUXJ
JbQTrQJgHHvSzzy60uCZsRe2SSizReBPY5Y7sdCtgdidROJyIAKrbK1org40
FHvam8saxUQ2qXLmdE1nh7quvL6rO9JdXN7XluiICgqZ0lipM9qMkvK5TCEE
S2EIQGS5qDAQhbEAmf+zpwgj9kJOEpP5CjqSmmYwKaxKlU5MFepk7dNVpQPt
4wvXLeVxC5PV01rcVONo6jaOz8cXllvnh/s6Yt56v3e+LRFrbR3u6GsM1w6O
xtZvzS9enOeqpRYiWozLthk5vdHS6gpRvK74APRbNQKtiuviglVFYmNLs6W5
QSlzI2HYlFOZCjoPzkcCkkHQ1FwQGq3kcHQmpcBo80Uq3BUeTcuoZWbJM7Sg
aOyw1Teqw0Hr2ECRu8ZRHRcbi3SjneahJaHVSiwx43mcfFRmTm5ywZF0WCoY
lAI8mZFMTMvi8EjDIy1tE23LF2YGJhZpXHGd197qNZ+NBSoNunIfzilILWWl
lEhONOIOi5EpqJTDYXpGjAgfg2bOCI7ddOI3PM69kO299rb9usbJaxvVcffI
fKKqq9YdlJQ1l4/3trN9hrnLF3XxUGFLvclRVVih07b4qxYHx2b7pFqqpNYr
aawlyQ+cVAnLWJSak4c8lXT86Km8k2nA5Dww7mQeLL242qvg0/lqqqe8zFmh
r+/2jy72XD6TqGhSWIVCE0vipudH2dDuBklcRUSiQH3xsvJCeYWNcXVzeGbx
Umud53RMvXO2rK5N1TTaUNPYiaVC2iI0m4IrzkESIPlOm8paJCh14xsGajsb
44Mt9Q3BCo1F0DIQH5yZLNQ59WqeGEdnUAVGqlwjLzE0RC5ujFq64o2zl8wl
USJfDsmhCukkPIoXqSuzlXqdwzOe4QVVoFFh0vHVQl1bs0BvL4BBMjjJ2agM
BBoDocAyUzOMtswDe55obkRhlSIdva/T3T473j7SXy/SD5TIlsz8Wja0zZhk
yUmRkLNLSSkRZn7UiCir9064Yka0sJeX/LGf+/V4y2dzbf84v3Yn3tnV0+xs
SUxON3YtdTb3xnR1DaWDrSt3r8xeHotNRFv6E2ixsm5mvmK42xaN8y1+cYul
5cJMpD7OZ8BZHBKZiGQqUDSrDo2AZApyUvKTQOgkCCdfSkMC0pOxWByAjEJi
U/OSoDAw2YSCKLiCtuWxxY15/1hfc7zd5annQvE8SuZQDd9IR5ZxwYlKS5NC
wmJh6w15ihLAcKNjrD4yGvfoOWh3PFhdHdSU1zmbEg6DisASuc10oxRJQ6GM
iAJAcg4NDvCp9VUqOxzNlwXjofGl7pnemtn2ieVlXajVJVLA4VAMHJ+Zj89P
YecQiIJKZ8XcSsXQQmJh0tbbZHBZpZUKKo/AYKLJbCgmPys/KRWKTUVhcWwG
R8Dm5QLxarqIzOPUxevKq2vttR1shbYhZh/viTaESxIySocOHSmlVdOT9MiT
Mny6G394wHrcowDPd/sSPFaAAa/OTp81mYaD5WdLvB80tK1rTWiqyu2pMWtN
8VKrLFQyvTTYd3Fm+fL4WnulQS5EKTWxpni4vt7f59XUlrXMzhqjHk9bCU2v
EMQjnHIfIAeeCQCzlCiAAEMMaPJFtDx+XpIQlgRLzz2ZnAvPQGOPK9y5By4f
jwAziQU8GsNl5EWN7IGljjPX+u/u945Mh11VxSIRql6PgkGz5awcKj6TpoHn
HD2BQmXSKHArD0EVUGh6TrTS0zdYGWirHJvt8LWWs4tLnTQ2GIpEm6hIHoQt
1+GUMR5TUxpwhdrb6urC0UQ1S8j1yKUsLg8IhqQkwzIyYQASlsMgIoVsb1O5
saTSVBVgSCVcIRePhQHx6RggA8az56TlgDliuKwKBxKAUo5INSgwjsBMAqAw
2SQYpKq6ZGyw15MIR9or1zcv2IsbaSisUU6u5EP7W+PdHo8TdqJYnQLL/hsR
9kZCf8hABpSLYCIQzAGBRRmIKTXuy52uT66e/Wzz2vu93Y3jbUIpF4xk5pFR
Oj7A1e5pTJS2NgTFeCbR42ptjkhtdUNntwZj1VKTtW9pNBIP8LQu9+mh+o5J
UZNPrVDDAEQ4Gp3HyOOaqAgcFShAEGnIPFABLicflQZMz0hX4dPsbACanU7B
5qKRECQRnJ2TxYLlialQGiFXJsCEqhVeJZMMSg0FtPFYhbdRb/I5GifLA3Xm
SFtQYFKo7bJCIRaYkgkl5tBx6LykPBENSMkBMhAkLhohUuJdpWSFWeYO+UxW
ExlJzMtBZKWCcrOhh49nIIAQIBYLzUrhKyUMEJkPg9FwUFJ2Hj4JgIXkgPJy
YLkFmEIEEJqXDsoHQsHEPCialm51WSlEJRucmpZ6FGQyE4UsAglMVUWIHrsh
XDG1ct7tMbt9juqou67KODHQ3+AIt7jR9+YTvfWhisLjavQxVtrbwII3SrLT
6gUpVZyU0SpvjUzlFqWOacEfn2/Z7mv76vL09bgzUVXErIqUzMx3Tw9m43Ah
tYiuFaLdWEm8nE6RwtkFkb7I8vyo0e8NdMW7yxm2nsbiWF15qVNYomeazSKz
1RkMFFZVM1h6opPJLZEJC42ZPBCRAEUD4Eg+DkMGQgAgOBQEAYHwQBAMWADP
yWaBYQgBlSGE+crS1WIGnISmHTuecTQFm5+DAkCNBhKdQBASYWIMnIgiyJAH
UxhGRsJBqXmZEBIMyYBjeWgcCYHHwVF4EBCHRHKzYDQE9H9ufkhDM8V0Fyq3
EMGjYosqwUAdCUmBg/DwLDgoBwLPy8/MAYJYgLystLS07PTUtIyULCggJzs/
mcRMIytymQo4CAij8XO4Xqi+tPwkFo6kHCAEESrl6f0VGo+rvTuorZJfuNZ3
9frFYGuPTi3Sskjh4qL5KtOIgTjtC/ZJaCrVMaMkw4bJYSLTkblp8JxMKSDZ
gMrDpmUZcalOaNqVsO5KTcXZgG/GZmcyoIUu3fTyRKmjGA5E0e0SiJSA1Ei7
2hT8ihKWyYmHG7FCsVwpNHs9lFC9PWhhKT2GQBHKoqpL9HHINCIN4q0LWWv9
dLZQyOMROCwmi5EtoVpjJUgwHsQU8KsjaE+caoolE4WZaRm4lEwyAg/MgZIA
KTlZeYAMQAEgKzUlLSX7f/YRJqWCcemZGcC0DLK6IE8MYMs5CCZRIgaTaAaN
zKXzqYSlJGGRCFdClpWxuUE+pYrHaMD7zhJsM8yqi9LwNj92mxe7yW/btY99
xKy5xHP3kK0TUJurgOLJJCjSQEwIDpECBBTkgw/mTE5SFiovOzs19WRuBpWY
mpYNRXJRaGAaHS/DsGhYLIhF5VLYIFO0sq11EJAKILJkFfWJzhb7YHfN8Ohp
o0tixeXZwXkmSHqrGLZTXVNOI2rwWQHMcZMyqZRyko5EIcFHAJAsAYFOgcBs
DNaYEnuvM3B3tvvDjaub4fYDLent7CtmF2UcP+l3Q5V8rKZNd/FCjYSBQ+AL
DMN18xd3i1RGBB3tHhtemBthFuuGl3si9bVmQ61QV8S280VFIktvqdZfSWcJ
wUAigoe0JYI5aCmXgkUjUEyd0VdlKvL77TUJrZmeewqffTI/JxOXB8CCM2EQ
vEDnb0JbHAAgKTuLANES0J5iidqMdphrR4Yo6jJGkZes1eBINJbJQZBVoIEy
jFIoUtdqKkeEjkFx5UJh+RxZXcVvXtMOvCeb/Eo19JVl9id19z/Ul585l7+X
LX+lvXBf2PEJofgspHa00HkabG0poHtyCM40FBcIQRxk/tSJY6lJx9OTU4Ao
AJ6FBRXkwfHZJLM+X2GTGthog1Xpb2eAWQo9iuPjz1xdHD9/JxQfC0blI8vd
y5OLPja+NcQaao6ct5ef08vrBHlNUhQPniLHJXl0UDkUiMo7ScUVSNiCMrNj
wlfdqRKdrym/M1v/wfVzd89vab0mZ7imUBJKOpGLQ0LEDRVtCx1LM5VqPI7X
4LI2TnfW1yDxQH5x3cDQoltjja4kps8OO4tLlc2O6umm2EgTqcgmIDAYLjtJ
7uOXFIlkRJ2Pd2BCqRQSiIJi4hBQNIIhxMNxEAyJRlOxcUosEoCj6dAMPV/j
9ynNZoFJLuDJqEohkwM3mg3C4kKpgi/zUPOJBZnIXDoCDiPADtqMSaAQ2Fi6
HKfXq2wuvzlg1Wr4Go9PUVJW6OtRNSxVrX1Qde5Hw/mfY9tPGzZeBa4/C924
P7L7s/nig4qrL+SjH0s79nkNV5WTW0UTV/C9F3ILa5C52RmHTh47lXQi7cTJ
oyfz045np6SDDwZFpLrC6idRwZaKqEYr4xaqjOZ6CpXg8Fp6e8eXl3ZK3VXN
LYHBzpFGn6tbwbqz0nyrun7dTJk1AzoNbHbKYSz8UFF+AT0tG5x+qEKE73WV
N2v1a00tPaXanbVLK619K63+7dHTJcMDidpGcB4MSOfRHY7gsKWquSg0OYiU
OqRKNZUuQlFoaAaxtLKMIzbVrfTWtkecQQu9xApjMLVuCV9ApWiJGDlTWuUg
sMQUGoWgIEvYJpGOiSyAERBIeCYYgYClIsEF4HwIITc1Kw2Rn5WTAcg+nguF
wgvyMEgQCo/EwdFSMJaRT4YW4DQoLBcKZGblK7LhcqjWBtM04ql+tNpCETtR
RBUKTySy2HKT3mD1SD3SoqBd69P7qyucVVWq6qro2RuJc18Flr8Y2ftpaP/p
mXuPZ+4+6Lz9qmnvz46tp2Xnvg5vPeq59VB2dr9odI8TPnsSI01Jz0gCZh9+
59ihd06dejcjB5qKwSKlrjDEHEblQ1TeaBoW5XaXRsq78sGApuH6lSs3N7d2
lkcm4onRoCvUJGeMh6iDleGrAdWqJGlQc6xWRiSdSiOnvss7lUT469vY/L9W
62nzDeH6YsHN0eDagHurs3u7LbDXXn5ztPvS4CgOz2OZStsWBzvbItAsaC4j
V+e3SSrdeAEKqabFehxiLhElZjlrdJHJkp7RSr7G4KopxmLoGWA0RcyXF5mE
hTKVVsYyyQx0GJuEQWH5vLw8LAxJIzJz87FkGIpOIgIzwDnpB/+ZnnQ4B5gn
yMvnQXOpMFgRBltE0iUkwl48O44rqqIpRwDOYbJ7hFN5Pad8Flk6JOjYY8Uu
iyzt3Fifov0Mr25VGJjlVHaou8/JGga43ijXVivkFfPUGonTr6xtdXXPRlf2
qs98PLXzVeuV7y7u/FC6+k1i/fHYzqP2Gw8rNp503XlZt/8wtPNF+Po39vZz
eJIAJIDn8bKTj5xKPp50/K8nUlOTsAIMDw8/lZ5BFTEAOAxH2yHiKRAo7NBi
z8XtvYtn9063nm5yBUejzRebE/eqFZ+Odu7XxqfoabWEQ4Ssw4gTf4WfPKRD
QeHHT4CPvNvklUz4wxoYJFakWm323h1v2hjveu/iynZjO0OEqYo6htfmgu6S
XDgPI5HwNRp+xK2K+aW1PpfX45JjIYL8gYE4gcBRUkkMm55D45Bg0HQICQvG
YfBQJpcpOoBCIiwdDEZCc1liFJWFAmTk5AAKdFYhDkSEnkLnppEgKAaQzEIy
QyhGgCDpR4l6iepenuo0WdyvCqzj3Zvcisv8ofeEZ76TTv0knPhaM/iJbuVH
08q3xos/i+d/0E9+Kj39kWHuC/3Sl8YLP7vOfl0094V24UvD4ldFc58JRj+U
nf7M1H+X0rmlXfikaP5T0/AdVf+NwPLd1hv3x7buB8992bXxU+T8j0O3ni99
+Hzuw2fTd+733vs+uvlP7eBluK8bREcgYScyk5MO/fdRePo7uXBKdgoy+63M
gqyj6rKy1qnN7s56vk11en4pVh3zJAYG2gYaBLad/tiEzv5BR/his2+vI9ZG
TBokpXpy/k7IfIOQdYRw6O/8w3/Le/e/eceP1EmwLibGBcrv4qN6LYXLnV37
pycWw1VoGT7e2VZTUmRs1jpGR6WuqCnciOcSRB6tUmHGEsFko4knZFA8Illt
E1Lt9Pq1WYA8DCON7aCL1Ni8PAASnn/kVCosFYzG5kOYCJa+EATG5OUjIVAG
JJeddqDcYD6B4mdXLMvsZ9i2FX74Bj+0IYi9L4i+p6n7iFpzS9jxIXf8e9HS
L5Kzj6UXXtgvveCtPVUsPlGffSJa+kl19pH46q/ma88t159Hdl+Y1l8Y1l+G
Nh4Xrv5ou3zfsfSteeU77fyXJWe+NK/8w3Xhe8+577Sz/xBPfVa08LV15p/F
s/9oOXOz9eqPLesPo/Pfdm89Gb/1dPzmk7Gbv8zc+6l/9x/xjU/to3d4knIS
FklGgDKTMEBAFgoCN/jrYAwxQSMKza0Ondt2VHla+3tWzt6weEKOIlNPsG4m
0HKm3bU26bx+fnk6UDEpRXYy8mPYtGrIX12oN4UFb2nS/itCPqTJOJxz5C16
+nE7FV0Bz/AoyMunu/cun3//ysaqL8BtMITq69FiKaGkrGxxLtY7wOLDGXIL
KZMGQp3M5p6saOTr3UQkCqjjoyGIPAAcSCLnn8pOB+thRFx+PgWdgkZgscB8
AAJGhVCZYDiHA8KQEVAIAIlAoIV0Ep+utlIUMWnZtDS2J23/SFe9z6y+pe6+
xw9ui4Kf8OJ7uuiueu2J7SDIV1+rNv4tv/6Hbv13xfV/GS8+N6w+NN74Vb/5
L9u5x/aNV5yLj8LX75suPnJvPCjbeOY7/3PF1fv+G88cVx+WbzxxXHlgO3i5
+Th4/Rf/+lPb9ceOi19VXPjOt/Kde/xG7crdsZ1ve/cftt94dPrei+7d+32X
v5jY+qh994POa5+4EmfETCG9AITLROSeOAUVnSqicEhEMlkJMjgsntp+DYO6
sjx0a2e3tSbQGXRcrqy8YFXMyxn9lca9leHbLc2jpMw9CzOCKZAVvCPNeFeS
9AYm46/apBP45HdpsOPC3BSfmF8CYdVwHEPxwNRYz4e39ifqhr2+4kTCY2my
D24vTYx0UugUDPkACgkZaZlwACaFANTomAeQfwyJzEpNzs8uyEnLRFPz8VgB
S6WEgTMkaijcps0GQwtSsxEHTgaKZXApSCwGiMBSaHRKsYJG9eHIMY42Xuib
FXmuSVs+VNR/qIvvF0b39WceWkd+0A9/aV+9r9n4w7bxm/7av2Rb/ynb+N18
40/T9r9Lb7x233hVsf9v2/pvjp0/LLv/Ltl9Xbnzwn7jpX/jpeHSC8u1h/5L
P3uuv7Jce1K18TC08bRo55V//ZHx4n3d+R9sFx4Zlr62Ln8av/DP+KWvvStf
Vy58Wnvxm87tXybee7H63qOZO1+e230/vrYzcWXHX9MpkYixSBwwKz8/428F
mHSAUElBgLE2SenQWn1vL1OFmLq0t3D6qkOE3l1MbLbXrtSoZ+Pe8w2x8VB7
CQa4Qs7a0HJNBzHJ+m9s7psc6lHCyf+LevsYg4GwY09Z+Sfqi9UmirBOh+vp
it7a3Xx/99qN8Sl2qd0xO7h2c+PiUIxt5Y9Mms8MGV3wAmAOFShTpRcAypss
HHERDATIIhELe+v5caWjpoxZFiMz0aIys1AqkJpoeQIUGYBRkoFcMQOvFGE1
bDSGCeZzaSIBT1kCRVgooojYMa2SntEGVrix25qRbwrbP9Oce2S59Fpy5VfD
8gPj5Vea9d8dW68rtv7Qr/+u2fpds/5v69Z/ROee684+UVz5jXft4Ovvgf1/
Vd54Zrv2pGL/d+f605qrP1XvPq/cel67/bRs+1fHzqvY3m+1+y+rdp7V7T8t
3Xvl2X7uufKzefUbx/IX1tVvixY+8l/7uv7yPxObD/tvfze08+H0tfdaJ5fj
TYkKf5VGrqKRSKhccEbyW2QKSV/RXpCb5U4EmkeuBfy1Bpuhd/yqy9WspmPG
XMxmLnzaQ7/XX702Wvn+/ExnIWHMgt2oKjekg/jZxw3ow+6CdOihv2ly3i6G
AWnZp6ywQ1ZgnouIb9Eyr7QN3r525fL8mUl7dXRlbvbS2gFUWoOldTH7UECu
5ueRrVkd4+FEQy3bT7d0BWd6Koj4HH+3cWAs3tpMl1cbqmra8pBoLALJlgjy
uUwkkYviFMEQHCEGiKPixUqegE9FsOkQBRkEJmajoBCijMhzUyX1NH6pwDgk
qt7RtuwJZ7/Xrj5zXHimu/jMdPWFa/N11c4f8vXXuvU/FFdeaTZfF2796d76
U3n9tf7Kr87135ybv3lv/1mz/Zv12ovQzovY3svI9vOSzae1e6+8W68qr/7c
uPsouP+bfv3pQUZsm09rbr9O3HpZtf3cdu1h6eaD2M0Xnis/VZ/7zjZyvWJ+
o/XGj3N37g9c/7DtzPbi2XPVbSOlurAKh5RhMizod0igTAmDhUhOJmmpTpOc
a1W3T830DS+2Bau7gnWhCHkqyLvU07beObruL7tVLLm35HdIBB1KvSv7HW7q
2/H8v1ah/9uc/d/hnDckJ/5myjzaizlanJvcwy2YlTI2WytuXzl9+dzibP9k
abO2bDKiYuAFLBwWCC5Aw9ttMBoAKJCx6QZDx2rr3GRNrYZSIMxj0lQQog2h
gCiUNEubW+23Q+BAZH463gFmsAgsCo6GZ8FJNDgEnA/Ly0xHIkAEBF1SADJk
JWMLKBw2qQQJ02AkRXRZh7T8DNvUI+q6q1594Lj+m+bab6aLr6QzT1TXfjXe
eO3Y+U/57T8jt/607fxp2/qXd+d34+6/fTf/jN77T+TOn+6d30s2X4Q3X4a3
n8f2X4a2fi27/rj2xuOG/ZfFG0/LLjwou3zft/Ok7fbLxN5z0/WHbbcPvNiD
8NaDut2HzbuP/RtPwxs/+5a/0S5/XbnyeWjx/cDKfsP40srIvIJtYcFz6MAs
Rno+JPUETQFkcdSWkiYkHKyW8q9fun7l9GpdabR3+EJ3qLmnwj7aWjJVU7bb
1bhgdQ7RINyTGWZEuijpLRfh+BA+vQRxuIx8WAM6biAeDmRnu7OzdKfyyiDg
kE46XurcWT9zbfv6jfMb6jJuWZUWiUYDTwHyslPK6xThtiiWTeYJUA2TFXG/
hZhfkMkDhZdmDP0tA2e6aisdCgWJVWv0NhYWIFEAFBYOSANm0ZFQFgsN4VLQ
LCIWgMwXconcQr7JIJfojFCCAJcFPgHksGl8DJiWCzMzEVq6LWbruKOc+0Z/
+bH30vPK7V89O/82rP+rePtP/dZ/NOt/WLb/cG3/7tn9Q3vrz6qbv7s3Xthu
vPLtv4rv/1a7+9q78bhs43F051XoxrPSq4+8N15WrT/tuPWq8fbL6M6ziq3n
TXdfdb/3a8/d5/H9Z+GdZ5HNH0sv/xjZfdp392Xt1sPY9rPSs9/4FnZCN74K
X/zYPXg60TlWYfZHlHRj1nEK8A1Gzgl87hGeDHLh9Glnqa2smLV17fzVidGA
xTVc3RAv0m93+gf9gbUG173e1i/r3TNC0QAP2oM9YchP7cCmT3BOhOlHXZQM
AyJDgk02QFHNDL4MCPWw6D4KPR4Ori2Pbl1cPVvbFOiMe8VUEo4NVIcQTKo9
GCiUWjF0rEyCr/QhtXY+mqcma6BqiwzBwwhMMmcxE8FAUakcYnY2lSY2uTVk
5YH9FeBzMDm5WRlwFCAfW5CemYrAy1GU9II8UJY8P4WWmk5A5FI5JqmwzGO3
d/OQYg6jSO0bLx6+WbT0vXPpO/XcT47Vh5zVh5obv5s2Xhuv/qa48qx483Xw
1v/z7vzm3fq18e5vVXu/Ndx87b/5e2j/18DOr67Nl8HdX4Mbz8q2nhk3noc2
nx8gUPDmy/bbzxp2nlbvPIltP+q4+bDr1uP2nUdlNx4FLn9Tv/s8sfeqeu9J
cOdR/MbDsvndrtXN0bX9ofraiRpTIhy0KJVswCFa1ttIwLvIY2/K4BytQUwp
AA7Mdp6/eLdG6A1byN0B61hp6B/n+j9bG1/o7fhouOc9PecfIelNZn4X9aQH
+IYf82a3+MgU841Bxrse8DEDKzWKzG4GZZXjwE44ICGjn1nonV9dWjm7ODc4
rzN48U5B/eyZ3qkreE2hXCoGkYlQGE7LZ8AYGKlTxa3sypIUZQtwglBcHm3h
RordOrnCJQISQGQaGi+FMiz0zDxoSnZBSnIWBEsEkKAZJDwE7EkDKmFZdBql
GkyzCPWVbM2Y2lXGNVplglo8Q6UgagSMQkVhman3imHyI8vQJ4rTn8tPf1l0
/iHr8rOS3d9tW7/rrr127f1Rtv+nf//f8dt/NNz7V+Du/yvff+3Y/K1893XV
7uvWWy9r9l8kdp7XHPTFzVfx3ed9t14Ed1403HzWuve0bv/Z/6Rg91HPrSdz
nzzvv/couPGwfPPRyN2Hre89Gfzgl8aNb82nb9i7pjprEhMmZItf1RJ3yAkF
sPTDqYcP0SHv0JJTqXmpSNy7pW1NQxNrGmXRXKxovSl0rqbzdn/w44XR3abq
Zbf+nIH6frH1thzWTU9tIZ3oAxztRb/RQ303jjnegDpehzniYaL7UUntiMwW
VHqCUrAUjuzfWNtYW7na3COpiLrqKoOnN7TmbnAOkCpiCRxOotKFF7lo/rLi
unDZ6aFwQ4KklMTHo221jmITD2fAULkoEgiJKKDk0BEchgoCAmdmZMGzcTkg
AwzqxjPjnNIrDOOcwHmeZLtMMw/yiucZ0Q1paIVXPCwuGeEVN8vrh8sqG9V8
td6fMLRfFHXsst3L6qHbyoX7opnvzVeea6+/Krvx1HLjd83+n+b1l96t30t2
XkT2XtTc+jW696p860Xp5pPw/ov4zpOKGy/KN59Er/84fvtJ7+2nLdsHcvCi
9tL3w/v3J+89btx/3HH78fCtx+c+frTy8aO2nV9iW79Etn7p2X3Yt/9TzeoH
DYu3GzvnR7yRSybhghZdLU2X4t6gc1DA3Cx5UpoMn0IjwRLl7rqKkvXVqRm7
fasu+H5j13tt9efrR27G2j5xVVx2mOa59POFBWUFeS10UD/seDX/zWrcMS/2
uIX8bg3t3QQhswWa3QjPrszNbRDa10dnP9vbeX9x6XooxjGa2TKuRSfBYjDI
fIDRC61simh8PoFVoza5hWIYSSS39Ea9QzWqqMUe8JI5dCIxj0xKF+okWncR
UcqlFGsyEJQMMC1DEaMH5gSFsxzfpti5S6+5x+79WDL2vbj+Y058SxLbVPfc
0Qzs6TvnzU2r+upJnVNjMZbI5VIhj6cu6RBGzmsbL0n7PrAuflV08X7J5UfG
lR9NV55W7fzm3/vdc/NfVVvPGm79Frr3e+v+q46DLOw+79l7XLX+6ABsmm8+
7bz9onbnacfOw8DOo+67rwZuPW7YfTRw5/Hke49bb79qv/1b9NJ3LRs/z7//
5Oynj1puPq3ZfzR4+6fgxS+qp7frKoIL9VVXQv5NbsGqNClGeZeR/FdY6jul
UhSaCfLbzWUWRWOZ6M5gSzkXudVR8WNH09cD4c+H574b7v6orGTbW7VBZY8r
+CV40iAYXZSXX4vOT5DQVcwsLwcc4gPDZHg7BztEQjWKFN169V515POp+c8q
y770WHWmiiAAQMHlmxo0Z9d8tRYciZ4jU6hpEhkCmApUSuTRQX2h0edTKBRU
vbMEqzjwvQicGCP16KBqK9oQRiBJGAFZrPUJS1Z5zstY73WeZ0da/p4y9jG/
4SPZ2E/qpfv68W/Z41/K+99XDN5Rtq4rErPapnlt1YRK49ZU0o0eh9aS0JlV
Rm9Y7hwxT94yLX9pmfnGMvKZZeXH0I0XttUf4jtP627/2nL7VcftZ53vvfTv
vmrZfVa5/qj8gGr2H9fvP6ndfdS++/Ag5l37D7t2HrQehPfu88adJ1U7zxM3
X07cezJ+72n3/vO69R/W7n5Xv/tL/+7PQ1tfz939vOvCV61tkwm3YKE/MOBy
hTHQIPINRt5hOhdmoILYTPhUtSMs1jVxS7uFqhlcwVcOw1fNXd/2dvxwZvrL
MvvXM3WfNw9cEgjHMWnzInQDPq+sIKufBB8lgJoop+Ks1CossI6VX4/FrjPg
m2bdvr/k06aGz0dHvpmc+iEcgAmJ9OxcBBtdrAU6FVQAkAICZZK5LCieT1dB
aRaBtdrGKA8i+XqqlGIOqNE4VJaukEZhIQRQib+sItqTSSpEMvhUY4wb3eBq
lpWms8LiTU7LF5aR7xSTDySjP4vG78vWHpkuPdHNfcmbuCNb/Fw+fpM5eEPZ
uiQdWpO66gSldrdPrTdJ1AqFzqjT1bUUzdzxrHzjWvvecfFx+frT0ms/hQ6A
c+9V451Xwb2X0e1nke2XTbeedd182rT73Hv9YfvNp617z1t3n7Xeej7x/rPp
ey/i2w+adx8Ovv+67d7z2t1nrp3XVRv3B28/POgd+/Lt5svvN+z+XHbl27Yz
18dWtkZbe6rtggk7qU/KUyLAuuwjNNDfFQyYgUHE5xIsQhsIBZobXvVxjJeK
1Z/29H6zfPbTyYVPplfvlFZ80920XVz7GTf5g+bQOJUZB7/lhWRGsKkRwrFu
8tFG6okmWkoHGdRDQSzjc7Zp2Xek2O9qnT+Vee/7fS9UcgEZkwqB8AhJYEwq
hkHH5WAAYDAJzuFoydreaOPqZN9aZ+j6hcTMWQaPly9EcsNhq7dW7aAhdFBF
yI+3O6gH7hhLwbJUrOJudvkZTMkGq/ETZt0/mbGPGHMPFStPmfMPxDdeay7/
qlt7UnzhQeHlB57L973rP7rOf65f2nLMrJm6FxSeCp3HJPYoZBqZVsmTllYb
G5fs0zcDZ/4RW/+l5NqDihsPogcFv/0stvOk7ubL2p3nzbtPag9Edu9x/60n
nbefxg6QZudx3fqDwLUHzVu/LL//uP/u86bdh1N3n7Xeex269dvQnecV6z8M
3f558d6D7s1Ph7c/XN38Z23/SH975W68fMlOaZKl7poo7RK+H3wMk/53B5tD
TM0rL5b1xJsVCOBuY3MTgbjodCw3jW/0T232DK1FGrarnV+09H5jEHysJGy4
HIOQ9Fb425WYVBP5mI2Y4Sfl9hPThxgnh3npt3mMDSZlT8a+FzZ/Mjz5RXff
t70jz0wOKh9ML1QAqZz8tByAyYEqHxGWtZuq/O7xurbrg8MzvbVtVl9AK5SI
YGoch4hge0QqNZVBhSOhWCyFUaT1yItt8lA529klCizwPWc5bR8YZ39mT/wo
Pf1Qfu6FcO4X9pnH4nMv5Fd+M2z8qr/+u2TzV9nGc+fVR5atX6qu/1By5cui
6W3z9J66fVUYn+B7+k1GpcymkBlD+sCAb+Rm8eq30WvfNu48qLx5UPBPSq4+
Cm09abr9YuTekwNh7d5/3Lb7oHPv0didJ603D2L+ZOjWo47bT7vvPJ2682j8
7pPg9tPBm4/77j3vv/ti4sOnXbcerH7yy/aX3y/f+Xz++v766uxgS88ZnXSH
SVxkZS8LMmeI6HheFiHnbXkhq1hG46DhQlSSDYQdLAp1YsA367S7a8vbk/P/
iNSuW527xY4HTtE3Nsh7scYzTIURnBomnmqinwoLM+voWaUcYJgKjDCy+yiZ
a2ToOQbhPIfcKFGMl0U+u7T07e7uN+1tSj99tNNVFeT72wtbFxPDi7H24YpG
T1FFpNDskmuiem+4EGcAwg/8XSEGRs4jQzLQQEQaOA9ekJODIsLIDBKJhOPy
FVYNTdYg881JOu4WXXpmWXmonP25cO2ZYPEhe+WJYO2V8Mqv2vXX5s3X4gtP
ZbO/WM7/aLn2i/f8V9a1z8uufR5Y/cC3uuU+t+1oWzKU1xSxCkX6QnWJ0xjt
CizcK7/0dWT9h/btBy03H0Vu3G/cftx2+1nf3adj954M3n0w9cGD0TsPu24+
HLzzS//Nh8EbvxyUfe+tJ637Txv2n4zce9p260ls70nPneczHz87/dGvQ3v3
l299dfn9f1699cHw8oUb5+d7Pd4VOumyKD+EPuaHp5dAUxwshI2HlnMphUIV
HpSiw5LrjVVVZOB+tfbrtdlvmuI/dkQelOjul/J/0b/zzAj+0W6/SoU0EE70
svPriSeC3FMj7JxaNmiUljMuAjax81Z4oPcLSW0MXHeh4Hp/zwcTUx+Nzn0V
bOse9jV45VRMgbyQxEECiZkQHDk3m52tqQQh2BgiD4MkogkI1EG8mSoQXQSC
FOo0dC4Dnp6HPK62gj0KFDQbSaUQ6WQzk+XgCYuVlYva4a+1cz9Jzz0TrL2U
nnspOvNCtf6Hdec/ys1/F23/qdv5Xb/xyn7tqfXKU9XK9+bz3zuXP3Osfmpb
uVV27T3bzD1D/bTKldD4e5W2qkKzxdo1XXXh04r1n/zXf6q/8Uts40fPpfvR
7ceD+w9bbj0duvPL2P79wbsPZz56uPThg9H3Hy9++GjmwwO1fdJ96/Hg7cd1
+0+XPnx49vPHUx8+q9/9efrDB+c+fRS/9kX76r3+mWubVy/tDXXfrDPe6234
xKw8Q05tR6aUI07JUUn8vGNGLkKpZgtYgGYxJ4RCVPPAX7S7f1yc/6a556ez
px9Zzc/C1keGI7+bgS8sgn8a8i/qkucZmW5Suo9wvIaRVkcFTlKOXGGnnFcd
+oKa+jkHtMmHnVXZ9mPN/wiX/dA+9FO88/8H4deNbA==
"], {{0, 128.}, {128., 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag[
      "Byte", ColorSpace -> "RGB", Interleaving -> True, MetaInformation -> <|"Comments" -> <|"Software" -> "Wolfram Mathematica 8.0", "Creation Time" -> DateObject[{2010, 2, 18, 12, 43, 31.}, "Instant", "Gregorian", None]|>|>],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{175., Automatic},
ImageSizeRaw->{128., 128.},
PlotRange->{{0, 128.}, {0, 128.}}]\);

Get the mandrill's eye as a subimage:

In[15]:=
eye = ResourceFunction["ImageTakeAt"][mandrill, {48, 64}, dimensions = {45, 29} ]
Out[15]=

Validate its dimensions:

In[16]:=
dimensions == ImageDimensions[eye]
Out[16]=

Find the location of the eye using ImageCorrelate:

In[17]:=
eyeLocation = First[PixelValuePositions[
   ImageAdjust[
    ImageCorrelate[mandrill, eye, NormalizedSquaredEuclideanDistance]], Black]]
Out[17]=

Verify its location:

In[18]:=
eyeLocation == center
Out[18]=

Show the match with HighlightImage:

In[19]:=
HighlightImage[mandrill, {EdgeForm[Thin], Rectangle[eyeLocation - dimensions/2., eyeLocation + dimensions/2.]}, {"Darken", 0.5}]
Out[19]=

Publisher

Asmus Meyer-Plath

Version History

  • 1.0.0 – 25 January 2023

Related Resources

License Information