Wolfram Research

Function Repository Resource:

INaturalistSearch

Source Notebook

Search for iNaturalist observations using the iNaturalist API

Contributed by: Jofre Espigule-Pons

ResourceFunction["INaturalistSearch"][query]

gives a dataset with taxa occurrences of the specified query.

ResourceFunction["INaturalistSearch"][query,prop]

gives the property prop of the specified query.

Details and Options

ResourceFunction["INaturalistSearch"] utilizes iNaturalist's API to find observations of species and taxa.
The query can be specified using a taxon (as a string, Entity or an ExternalIdentifier for a Wikidata ID) or by All to include all possible taxa in the search.
ResourceFunction["INaturalistSearch"][query] is equivalent to ResourceFunction["INaturalistSearch"][query,"Dataset"].
Supported properties for ResourceFunction["INaturalistSearch"] include:
"Count" total count of taxa observations of the specified query
"Dataset" dataset with taxa observations of the specified query
"SimplifiedDataset" simplified dataset with taxa observations of the specified query
"RawData" raw data of taxa observations of the specified query
ResourceFunction["INaturalistSearch"] accepts the same options as Dataset for the "SimplifiedDataset" property.
Other options supported by ResourceFunction["INaturalistSearch"] include:
MaxItems 200 number of observations to return
Page 1 page of the observations to return
ObservationGeoRange {{-90, 90}, {-180, 180}} geographic range of the observations
ObservationDateRange {DateObject[{1700}],Today} date range of the observations
The following "QualityGrade" option specifications can be given:
"Research" observations with research grade
"NeedsID" observations that need identification
"Casual" casual observations
The following "HasImage" option specifications can be given:
True observations with images
False observations without images
The following "HasAudio" option specifications can be given:
True observations with audio
False observations without audio
The following "LifeStage" option specifications can be given:
"Egg" observations of eggs
"Adult" observations of adult specimens
"Teneral" observations of teneral specimens
"Pupa" observations of pupa specimens
"Nymph" observations of nymph specimens
"Larva" observations of larva specimens
"Subimago" observations of subimago specimens
"Juvenile" observations of juvenile specimens
The following "Sex" option specifications can be given:
"Male" observations of male specimens
"Female" observations of female specimens
The following "PlantPhenology" option specifications can be given:
"Flowering" observations of flowering plant specimens
"Fruiting" observations of fruiting plant specimens
"FlowerBudding" observations of flower budding plant specimens
"NoEvidenceOfFlowering" observations without evidence of flowering plant specimens
The following "Alive" option specifications can be given:
True observations of alive specimens
False observations of inert specimens
"CannotBeDetermined" observations of unconfirmed alive specimens
The following "Threatened" option specifications can be given:
True observations of threatened taxa
False observations without threatened taxa
The following "Endemic" option specifications can be given:
True observations of endemic taxa
False observations without endemic taxa
The following "Native" option specifications can be given:
True observations of native taxa
False observations without native taxa
The following "Introduced" option specifications can be given:
True observations of introduced taxa
False observations without introduced taxa
The following "Captive" option specifications can be given:
True observations of captive taxa
False observations without captive taxa
ResourceFunction["INaturalistSearch"] does not include observations with missing geographic coordinates.

Examples

Basic Examples

Obtain a dataset of threatened species observed in Yellowstone National Park in a span of one week:

In[1]:=
data = ResourceFunction["INaturalistSearch"][All, "Threatened" -> True, "ObservationGeoRange" -> GeoBounds[Entity["Park", "YellowstoneNationalPark::zc6x9"]], "ObservationDateRange" -> {DateObject[{2020, 7, 19}], DateObject[{2020, 7, 26}]}]
Out[1]=
In[2]:=
data = ResourceFunction["INaturalistSearch"][All, "Threatened" -> True, "ObservationGeoRange" -> GeoBounds[Entity["Park", "YellowstoneNationalPark::zc6x9"]], "ObservationDateRange" -> {Yesterday, Today}]
Out[2]=

Get the total count of wolf observations in Yellowstone National Park:

In[3]:=
ResourceFunction["INaturalistSearch"][
 ExternalIdentifier["WikidataID", "Q18498", <|"Label" -> "wolf", "Description" -> "species of mammal"|>], "Count", "ObservationGeoRange" -> GeoBounds[Entity["Park", "YellowstoneNationalPark::zc6x9"]]]
Out[3]=

Obtain a dataset of all observations of different types of eggs from a specific region:

In[4]:=
ResourceFunction["INaturalistSearch"][ All , "ObservationGeoRange" -> GeoBounds[Entity["AdministrativeDivision", {"Catalonia", "Spain"}]],
  "LifeStage" -> "Egg" ]
Out[4]=

Obtain observations of a specific user containing audio recordings:

In[5]:=
audioData = ResourceFunction["INaturalistSearch"][ All, "UserLogin" -> "jofree", "HasAudio" -> True  ]
Out[5]=

Import the audio file from the previous observation:

In[6]:=
Import[First@Normal@audioData[All, "AudioURL"]]
Out[6]=

Obtain a dataset of observations from Canada containing audio recordings:

In[7]:=
ResourceFunction["INaturalistSearch"][ All, "ObservationGeoRange" -> GeoBounds[Entity["Country", "Canada"]], "ObservationDateRange" -> {DateObject[{2019, 7, 19}], DateObject[{2019, 7, 21}]}, "HasAudio" -> True  ]
Out[7]=

Obtain a dataset of a specific taxon with observations of dead specimens only:

In[8]:=
ResourceFunction["INaturalistSearch"][ Entity["Species", "Species:NezaraViridula"] , "SimplifiedDataset" , "Alive" -> False]
Out[8]=

Options

Options from Dataset can be directly specified in INaturalistSearch for the "SimplifiedDataset" property:

In[9]:=
ResourceFunction["INaturalistSearch"][ Entity["Species", "Species:CanisLupus"], "SimplifiedDataset", "ObservationGeoRange" -> GeoBounds[Entity["Park", "YellowstoneNationalPark::zc6x9"]], "ObservationDateRange" -> {DateObject[{2020, 07, 20}], Today}, Background -> LightBrown ]
Out[9]=

Neat Examples

Create a classifier to automatically identify observations of nymphs and adults of brown marmorated stink bugs:

In[10]:=
classes = {"Nymph", "Adult"};

Import the images to create a training set and a test set:

In[11]:=
trainingSet = dataset[[;; 700]];
testSet = dataset[[701 ;;]];
In[12]:=
c = Classify[trainingSet, PerformanceGoal -> "Quality"]
Out[12]=
In[13]:=
cm = ClassifierMeasurements[c, testSet, "ConfusionMatrixPlot"]
Out[13]=

Test the trained classifier with two specific test examples:

In[14]:=
testSet[[8]]
Out[14]=
In[15]:=
trained["TrainedNet"][\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJw1u3VQ42u+N8ic04KTQHB3d3d3d9fgAeKQQCAESSAQIMQ9EA/u3k1DQ7ud
lmMzc2bmvnPv1Pvubu1Wbe3f+/Tc3a6nUyRNJ7/PVz6SgHsHsqLjRwMDg8L/
7+/3ry/eyzdvmLq7VeHF1Or5mOTltPB2nH2JX9of2P+8pL2bXd3FCE7GtK+X
dr9JVG+WJFcT6rspxe3kwecVzes54dX44i6GdUwSXs3Kbhb1r/kbbwQnX9eu
fldtv+WqXi6pP3CUH3jSuxXpNUN0RtM8X9x6QV+7JKpuyDtv50++8s5/EV/+
vr7znrN2Pau4m1O+oqreLux/law9X1LdM49/lm6+X+WekpR3S+DIbqnLx3jW
BW7xeIh5QVS9W1Le0rT39J03zK1Xy4dv+Vt3zLNPa2/+42D/rVh/z9l/L3ny
RXX2SaZ6tgQukraDXjolrF4QWecj63fTW+8Wd9+vHHxirV3PSJ7N7P0sXH+5
sPF+Uftydv2GzL8Y4Z0T2Cd43gXAiFW+YGx/Euhes9ZuFnQvl/c+csDRv13R
fGDtfJOsv2BJnyyefJZf/bKmf07bfT2vvqUonlEOfuKeAgjv2Idfxbs/cQ++
8lWvafvfuEffJLufxKe/rj/9m2b3A1t2TTv5Ze31/zrUvFyW3syIbsjCW/Le
r0L9R5byfv7iV8nRZ97O21Xd/dL2G875NwU4my85Bx+kp18UT74pn/+xefpt
ffMDb+VkYuFwVPZiQfeBrbyn73/iqm/nNXfzG+9WNO8Z+s9M6YtZ6e0k6xiz
fkfZ+bKseDm9eoJbu5tVvqQrXy6AIoBGn/9ZdvCZvf/T8tVfhNqXNHDZiueM
7bdC3R177xXv5INI+4y2/56pezEPnl/7apV3PnPyZ/Xhb2vgRXc+c3Rv6fJb
yunPYvXzpcvflMqbRXDZB59E9/9j9+QXxeY77t4Xofrt8uYX7tnfNOsvGZpX
i/tfOVsfV3Rvltbu5o5+kT7/ry3uGUX6dO7sZ8XT37Xbr3lbb3ib70Dp2Nyr
Od5T+uZnqfIVBxT82R8bBx/54ovJtVvq6tnwhK5jZqeXcYheOcIInoxtflri
XRI1b+e3f1qV3c5ufGCCVqpe0C//kIDp3fm4sP95kXeKVT6fBT1SPluQXczt
veLsv2Ff/Sp78pv8+Kv4yR/645+1mpcixXOe5Clj84NA/2ZVfUffesvcectV
PF3cecPX3K5uvxaA1oNe7L4Xbr3hbL3nXP0NFESmeLWy9mIRvPTp74Lzv0h0
7xgnv0ue/EP1+v/Y23jPFl/NXPyqOP8qX7+m88+mBJfU5cNJzgVdcM1UvRHL
rllP/rL35PcN8MySy+mFHTRhrRHOzENKqsbVnYsHON6Tcd3HZfoeau3l/P43
/v43Ae9snHMyJjwbF1+O61/O7X9iqO/I4qth/gVR84YBOrv3mXfxi/TkixCc
rbcs9fMV8SVjeYsmO+cNM4fmFaRFNZG/P62/587KsURWN2dnakVHFh8tvPvP
y8tftIqnS8//sXnyTXT9D/XT/1BvfeFsf+VKnk9LnlEU99TDn3n7P7GOv/HA
uL74p+7gI3fvHev5H9rzn6RrN/PsEzL7bFrwZEH5WrByNM8+XdS8lHz4Xzc7
b6WqZyuis2nWCZFxjMErGgaEFcPS1uUjgvB6WgLaejq29ZH79B/6q79qFM+X
Fc8Y6luG4npu8+XSzpsl5TOK9n5OeTvHPZmUXNCe/aGTX822krLKUdGDi5Ud
U2U91AY4pRHJQCBmO4isgS5SieBgekE9hphr6qZUtY2V1GELyvrSKULMm3+e
/vb/3P78f1+CvX7zP3ee/KEGc/ju/zoA7QM7uP2OufV25fxXye3fVTd/U+6+
X917t3r2VXT3d83N70rJNfW/AW58FKte81gnNNHl8vozzvO/H+2+kQqOZuha
DFU/uHCIoR+hJrd6ZzaHaNt4+u4I42B0fnN4XIJY3accflKon3EFhwuiw8X1
C+ba6aJwf0p6PKN/xhLvLuBoPTV9+fMSQvVAWlZrkPiMsvuJr3/HkdwsCa6W
OWcLmhd8QL+CY5Lihrb1XrDzQXL1u+bos0xxvQqelq4i7b2Vffrfzzderoyw
W0j8LsExdfuNaP+j+PAn8fFnycFH4d5H3v0/N8GQHH4T7H3mgsUEK3n0RXDz
V+XSDmH9jrH3Rfzk7xurR2Tps4Unf93UveCITqiikxnB0ZTsirZ6NDa7MUTZ
GOhhVjTN5NSOZ6T3hKTBg/P7YpMbAhJrgot7MqZ4wzTxOGkZS14dpjBxgxMt
PYSaoYl23ORAP76rvqu8uDE9uSSAoRw++yaV31C1b5e3vwjWXrIE1wvgRTc+
rF7+WaR9M699w9z5Kt77yt/6xD7+prz6y/bNHwfHn1Wqm0X+0fiiDgsnl9Ri
cjNbIvtmq8WntPf/On36q077nLn/UQg4fPez4OyP9fVXdNWrhc33zOu/KMAu
CC9mwBpqXwEiWt79wDr9WSS9nFzaRG28YEzLuwcWKub1WPhcRQk+LR8VW4iO
aphIG1qtJkm6ufvkvTfScdagdYBJfl36gpBGpOJbEA3FdXlRqSGzK+T8qqwR
0nDvYE9hZV5MalBmReTunXD9yQzYF/VruvrdouodU/l2BWDZ+8rTvJiR3Uxs
AAb+s2TrGxswtvI1E8zVzifZ0VfF7gcu+4CguKbf/rG991reMVaZUOWb2RDS
M1Ghfco6eCcFonD4Zf35f+2c/aHc+crf/IkDigYoa+8jW3pFWd7GbL4B4sWW
P52WXVGm5J1DC+UliPCMVt/G0XSiEI5YqhkWw5ePRmXPKUABpc8ogF3Xr+b4
OxTRDn1oAu4X7T7PppKmx/JK8yobKstqyxCovr6h3mkaFYVHl1YVWzmZYKe6
Lt4pwPrvfVpR3E+JrsfFtzOadysHXwWbb1YUz6bVr+Y3PnM0n9kHfxGxrsZ1
nzg732SKu9Wdn8RbH1jgCrffMC9+Wb/4qt1/K9t6zsXMNwdn2McWeY8ye9TX
rM2X/KPPa6r7ZSCX63cLh7+I7v+1+ewfLM0LwH5Y1XPK9tsV9h6xkZgbU+kZ
U+ldgUlf2CAC/wAEjn1KWDpG8a+J6rcU6Q1hZW9g/Xpy654hPZyNznaLSPXs
HGzaONCq9Mq2rvacgnw8kQDv6kTiUHQmncGhowiIsCQ/OKZy8xlXf7t48pVz
/I2lfDELlB1Ig/6etf9OqH6yCLZJ/mKJfT2rfMekH4xI7xb3gDF4xzv9XcE+
JkqfkHfeMZ/8vrb9ii08mtp7y9t9yd+6EfRN1PqnWLdg8xRnC8fvpS/+2FI/
+z7P6hdLV39X3v4H7+zXJe0LoK3s1//aJPBaoipceudq6Juj2x+BA2HObeM5
l+PyFzPzewjuE7zy9bjmLZl7glp7Qtq8W9x4srJ1xc8sjugZakEND4ilotLy
sqjo2EnKtFqj02/qZErJb3/7IlcL2/vr+/DNqMmmhTUUcwsjfzIhvhwDTub5
f+g3XnE2XrB1t6zV7bGNT/ytLyLVW9bpH+rNnwTg7sVf1Ts/8YHZ2P7EfPe/
7b78Tz1QAaD+AODT3zSbtxzV5cokD5HVGJzZEERfx4Babb1mX/y2Jn1KZZ2M
Hn3ibb9e5h+PHn/hX/9tbWUXSVprmdb3MM+HBTcTrMtRYFDZlxNgkOT3C8vH
I9ufGbp307LrMdBB3i6Rpx8X6GYn6ehBXGd0XGhLW3Nvf19rexsKg2Zx2Ccn
R+cn+3/55cu2XpOXm5mcGhUS417SkpDXEnzxs1h1NyO/nT78RQik+fm/NthH
JP75xMY7JiBDYNIOvkhUL1eu/0P3/D/1p79JwYPym9mb/6F99jcV4MzjL9KL
n9WXv2jWrhaX9CPAEgAzhmG14DhtoidU9Svm/i8SNTAMn7kzUmQHqaganUIW
d/BPiZxTHGjTwlHf3GHP8hVmeq93+XJEdDcruZsHPgdIw9r9tOr1LJBv4cm4
9noJNVVX1poyOjMwNTdaXJbf09fd3dszPTuDRKMAQJFIsKFel3JZi1RqR1OL
hblpVGyQX4Q9hYW4/kW5vIWm6vqAUgPSkzyfFVyRWUdE/Yvlky9S4F523363
Z8CEX/wmU9/NH/8iBm5B/3b5+BcROJpXjIMvsqu/6k5/lSvu5oEh3P8qAn4Y
GDnxDW3nq/Dod/kGsJqvGXHlvtmtERPCPsEJBcy5/G5K/npKeD82e9wzttE6
om9lXOJoh2iyrn9hf2z1bHJxHw+sNeh+z3QZRTS0KB/zi3HyCnZo6qgrrSpp
h3cgQfPwOCQWMzlLmZohk8lYPpfOYS6Vl1ZkpGXmFeQW12RrjnnC3SnsUu3+
Bw7QaGAFJU+nJZeT609pG7essZWeSTZyXkZ8/68Lzc13Ynn2h+Lm7+pP/+eR
5jVd+mz86FfW5qdF4KCA+VS8ngfztv5i5uY/1Tuf2KAC2heLwAcqni8o7xZB
goiv9qar8boXrJW9Ue45SfZyhnmJWzgbWrhATh50Tx/3LV3hF08wyydE3tUM
83ACpKrtd2xgYoWHsxU9aYUNiRklcb6hbpl56SmZyWkZqaXlJTWNtX1D/YBC
4d2taGwvCtNTWVGSn5sHb+8kk8dHJzFvf30q32P0ksv33go0tyv770XA/Cue
LLD0pA5ciWeEVV5NUnx+EODnzRu27mZh99Wy4unswSeO8JwoviKIr4ep+g4A
Svt2UQrm/MUM73Lk6Dfe9qdl0QXp/FcpuMKDLyKwuayzCeYeBng5+XOa9Dlt
fh81dzy0eImSvKPIPkwzrtDzJwNLpyjxM9LSLnb9yQLY391XK9pr6py4b/2A
Jt+YL6tL8/S1Cwzx9Av0CosMio4LT0qNy8pNq6otycxJjowJjUuILiopLC0t
xmJQM9PkqalRJLaTv06PzwvsG63beCZSX3Kfft3j6emtqLL8ukSvCDuIy0Pn
ABv3UJugRKdZztDOs2Xl2SR3G1PaF4CYy9bckdeuR9efjZ/9KgTenn9BWb+f
V72a3/26qn4zB5w/uKt9w1K/ZR38LhPczihekG/+a+34NyH7ggQCEf+WpPg0
x74hSl5SeNek1XPc0gEKhNyemaLeqUrZMf3qk1y4Pa45Xji/X7+809OXx3Lz
k5JTYiKig3z8PYLDfH0D3D28nfwCPcIjAgKCfSKjIxKSEouKCuAdLYP9XW1t
dXUNxfFpIQ4+5hkV0bpLKVtHr+zOi8jw9Qy3hbo+CkryGJ4dSimMtXIztXJ9
7B9rg5+pL4EHlnT7NRAi+mjpC/pO/YvZp79Lzz8LJGdkzvG45vWK+HpS+25O
/4G+9YW5ejbas1w+t4/VfGFO7SFYZ0NbPy0y9tDzW8j7/6nXvqNzL4YBk2hf
MwBx3fxdy9olMLdGg3Md/FMdu0Yb0VNtjQNFVBZRpmM+vT8cI6MBkMSkqMiY
4LjEiNSMRNDKkPCAgCDfkFBw6x8RFQ7mNi4+KjoqrKQgNz0lPj8/PTTS29Ta
wNLtUXl7Vlimp2skBOJlkFoWNLLQvXEr+/iv+4aBCiO7H6FOpjA30yp4Bmdr
jCioKR8J6FvOmFS1Hn7m7b/j6q7mnv+uePnPDfETCsjdAIX2HY2+j2Ce46h7
/W1L2ZR9+LC+bukQQVa20PT93NOxlV20FOSgFzTN3SxYbZALlM/mhScU/iGl
sDfOPOCBTYh5cKp3VmVSQLRXbmlaUUVORnZSZFRIQmJ0aEQgmMyS8oKQsMDw
yBBff5/g4ODo2Bj/QJ+gUD8HRxtbG0sXB1tfTzeAMSo62NDCAOZmHJrq4RRm
5p9iS+Ei3vz94N0/jy5/1SmfcbonG6HeRuZuhi7h1piFzuUtYvaAP5yRCfhh
6QQLLOXGPfPsHX/r+aL0ckJ4NaZ+Nbv7dXn72zLv2ci4rgW3XjsgKaGe9/ZK
C5hHSN4Jjn9MWNnGiE/HJOej8gvC9kua9GKMc4AXnI0C7IDJJ7X9pcOpYeU+
kblBUDcz7zC3yMQQ/xDfpJT4sPAgRydbV3cnJxf7wGC/0PCQ2PiYiKjI4OBQ
T28vL183Tx9nWztLJ0dbZ3s7R1ubID9foIl+gW4msD/5RDlUdWUuyPHcbdLl
V6nmdl50Tt7+JABxu2OqvBiVUIyKy+wLimtzb5jO5Tyj6n7ir71cBnKgej6/
/nR2/Xrq5Gf2+v2k5IYkuSMvn2LmDwdQ0soaakKvqGR0G960ki17MXnwCwsI
BOdk9O6famDYFrRduvtp4Slh7SmFfYgHsV35Zk77abmfVZs3kJRSExWVFWDp
YmzpYOId6A4oxdnZ0czMBGoFsbaFubg5g+PgZG/nYA/+uLq7uLjbWTtaAICg
gz4e7pHBoQkxsfnZWaFhAcaQH0rq0uQ7S2zdxPzaIKCv4594R1/44Eq2f2KT
FJ21k0lxcJfMwUC8rI1xNCm5Y66/YgueUvXvmWt3NPBt2jcLa/eTW5/pM5vd
ILGOa+H8+4mlJ5jp4x6crpFy1E85GWBcY6WfqNQj9NTOkOTF7MoZnqxpZx5j
QZDkHpF4p+S1W9rpn6XSm9mVg/HlnYnaoYzc+siINNfHUIPACI/KmuKMzBQb
G5ixqYk5xMICCrGAmgOMXj7ubu5Onj6uTq42Nk4QD09n0LWB3p6cjHQXO4fo
8LCI8CAozKiqMb+xt6hzuGxZM6K9XZScT55+FWnu6VRdVykuJKrJZohTxTye
nN8aV93zVHds1T0DbNzel1XgjZWvGboPqzNbPaOKZvH9zOrTCeY1Ca1okH6a
oj8dHFSU4nS1fdKy+SvMsL5t7hw/fYhhXA6DCojuyaAaqjdLsps53dtVoCDr
z2mMHazgfJp7ODUr6k8qdTd1MDCzM0jJjswt+E4gbW0tBUWFPn6+Lm6ubh6u
vv5eYO9iYsNjYkMTU6KLy3Kbmmsrq0rCgwPcnR28XFxiw8P9vT0gUCPvICcD
E4PilqTzTxr5OV16Tnv+152NO073VG5UBSy+1nFgrlqwv7D5fF15xRUf09Q3
c+x9zO5HxtbHJcULwJkcorK5i1XIviVL3y5M7CKal3MALsJ2HXGnvkuU3SXM
W73A0w+QjJOR2R0k53pM/p7KejJC2x9cPMSvv14EzwBS2/IhknmMBhFpRtFL
5naMr3Q09mU7+xlHJvrExIe4eziHhgYnp6a0dbR3dLYXleQnpyYATYyKDvXy
do5LjMotyESi+gFGF0cbB1tLXw9Xfy93GytzS0tjO0cIxP4RaqJLfsBi6qfH
OCgsfagNV59bF1XcFJ2Q45FeEMyRzAnWl4nUfs0Z8+D16sbdjPp2Ung2rP/+
Vt7c1G5Pr6hs9gQlfj8/sd8/IK8eUpZNnbZhtSWt7KQ+SQHrFEPb6aPvYbhP
yMBa049QU1u9S6cE1jlFcrMkuaZzjsniM7L2OZ2zOza/hl5WElvRhWnFoc6+
5s5esJBwH28wjW4uXj6e2blZ3b3wvMIs/yBvN0+n4BC/wCAfNw/nlLTE8oqi
sPBABwdLdxdbexsoxMzQ0sLYwtwICjOxcjSvai1BUnoqewo94p2dwt2MHE0g
roZ23kbWjgZObg8ra9IRqKacsrjgRIdRRtvhO67geJhzCAh/jKJumznsRcgr
qudTJ/Z70aoGOD8PpSxvWI7t4qX0izO5L7HsS+zC0eDMFkJ6T2NdkOj72KXj
UentsvhidU4x1THcgJqET69gSLS+mXnMzCK+pCnTysPEwMjA2PJHOxcYUD0X
VwfAog5OtsFh/pU1pWmZSe5ezg7ONr5+HkAdLC0t7exsfHw9wBq6udsbGho8
eGDg6ebo4epgbwdLz0iG2liU1xfNsikeUS4GZgY/2JkYukCNXI0f2RtY+xp4
RT3OrQnMLA/2i3YMiHN3i7DL70icEHf3MgoqSWEVE6HZRN8CSljDcnomIaBi
NqZlNa1XmD2xW9/JSaJfdKx9Gp/f6V5/MfXvNxWlkmfTzCOC+Iq6tE0uR+Ql
l8cFJng7BVj5RTh4B8A8vC39ghxDEwJ8o31s3KytnWAweyszC2NTM0NbOysr
awjMFuLoYgtsDEDn7GYfGRUKOuvq6url5eUf4G1ja2Fu8djOwcI/wCM2JtzD
3RmEi4z0VKAvUYmRpY3FCflRjUN16DncrHQuB57tmmIdkAdLbfJg6JA02WDH
cLlLmI13nIddqJVPtn1qV0Bsh0MEHBbT5xTWZZuC9kpBeyQNOhVPBBFUFaOa
Cskb7Mav5PmTVv7x8O77lcNPvMNPAuUzmuKaevFtja7EWwc+dgyB+CW6OgWb
wbz/BPMysPI0gLj+4BRoF5sd5x7oAbGF2DnbA2mwtbU2MX0MkAKA1nZQD28X
8IWFpQnoLFAQZ0cnJ4DYxR7QKcCekBwRFhkAswZ0a25rbePr7ePt7enu62xu
b5ReGnf2fmfzXiY4X0jvDXfKM/GutPKvg/UwS7sZJUhGbUZTKNTnsaW/mV0k
zCTkgVexdWKfX0C9tW+9ZWy3S8tiei7WZ1xfj5MWEdZLtn4hT2yUzBxU6l4s
qG/nlU/pqusF4Nv1t4tPv8n7J8vNPQ2Ag5oTExfXx0T7MxPczq0XPCy9La4g
rLG/NqM4NTQmJDUrBVhNwDDh4aF+Ab52Dtam5kamFoYm5o+tbCysbaAAIMwK
am9nA/Y0ITkmJCrA3tUa/KslzAICgZgam/j7+oVHBNvYQ6ycjKIy/FaU5JWt
kT5GaVKXp2uJsX2RkWOZaXSPR/FobDe9CLPSUN6f4R5ja+T2yD3RxTYaGlnr
jxF2tTPK4IzC5rn0AXYhVlwmeIpb2Ouc3WwcVRWNbxbtfeWrQRh5vgz8GEOL
XtFhlBezKRXupi4G4Tmu6ovV3deiRR1acUMFytgxWZBeG5ZUHOwT4eAR6BAQ
5uPt6wGDwVxcXNw83N09PYCNARrh4u4AWunsYgf2zt/PJz4uBmhlflF2VkFa
SEygjaO1iZmxuTnECgqLDI+IiAyxcTA1szYISXQeolS1TaSkdboElJi75Bi7
FkISe4OLiUkVpOSepVIcqwG90DjBGojO9jN3fOwV6m7jC8vpTh5dG2ijFpaN
xFGUHaInJNnTSdRKafVoNEZUOiDI4T+dFD2bUb/hrD1bFhx/f6NM+3TePfbR
A0eD/I64tYvFrdds4GeA8g6wyuIbXX1TIBA3A98oh4hEPwtro+9YrK0gEHOg
9R5e7ikpSXkF2ZVVpTm56dU1JSmpsakp8YlJsZlZqYBdwQGqkZQcm5QcFxYa
HBwU0NPdmZmVAsTC2sm4vDGDMNfePZlZMxIRVAL1KoC6ZJvnouLGlAMYQdvA
SiVB2IJjNrI3xtkqSnx2sI0L1DXQ2SrALKLEu3WsELvSQOQ2lSPDoyutLSMM
YLEGteSYpbP+leNBwfU45xKY1XX9S670jDonQ1j4Gpj6G3TONvDPaSv7wyt7
A0v7/RXEmKBimG3Qj0Y2BoGx7kFRvi6eTjZ2VkbGD4yMf7Czh4aE+sZEh5eW
FaYkx+dkp9XUFHR01rZ21NY2VBKIOBAGZykTC9Sp0eFB6tTIIKI1MNC9prY0
OS3eydXOwc3G0s7UIwi2tIZl7eB98yx8iy2dsx83UPJ4V4sT6xj1KybI2rvv
eFOS/iUtYVI46J/pBvUzdQ+29Y907ECVDkxUeSY9dE0yiK6BFqN9W2Zj0Pzc
YUmB7MkY/3ycsU9W3Yu0t1xQn/KeGFMvA9PAP5HkOKAXLGD5Xs1wztBpPT7+
RbC4Yh+XQKiVk0lodGBYRHBQiL+Ts7W3r1NycmRzc2VHe1NDfXVXZxthBNPb
27SyOoMbHVhcndNvqI/39/Z0GjmXvakQbmkE/T11ZeXpA0PwnPwM/0C/kMhQ
a1tLc9gjBLFOebYUU+YZXuocWeVMUQ6t7tE4h3TJk3nJ02nBBZmqRawejkyp
e1tmiyKrPaEeBtaeBk6hP4TlW+b3+eCEpcNrpd3sJDgzfkCYMSTMPn8j5W5M
yk44x++3RTuLGxdcFKXWwsvAPtqshVI7vz22tDdC1fUMsUqCq209sy0LW5NQ
ox1RCUHBEYEZWamZ2WnZOWkoVPf4OLahoSIvN6MgP7u6qgyNQqDRPfiR/qk5
0hhlRKVe+/Tu7R8/f73c39XKuJSxQXhbeXVNXmtbXVllUVxCLIhXFhATbz/X
ho5i/FR3VmVMfHFATmMEfrFtfm1ccrIivKBKb2ZGZPVTm21YWUXrUkonKxsj
ryZrWjCi4vqZiNaV2B5ZSiMnvHDOvYTukz/rXc+OG1KXljRHRWQ4x5cEd481
VPZkNA5mZ9UGGLoauKZC+pdapHdLC3u4ua3+0bWWwGrriFrPhOLg/IrUhraq
8JhQd0+3lNQEsGUpKTEs1vzQUHdGelJSYmxlRUknvIVIRLO5C0Qyljw7RqVN
LdCoCpFgaWZqDIPobKmIj/YPC/Hw9nYGauLgYGcOMXts+COQGFA6n1CXoCjv
5JzInMr4+t7C3NqkyDxfqgI7relTf5qiHrc1MmJqF6Ow2jLqRbvkI475om94
u7BZGFnNDixlepez/EuW/TvkqXBZNm67PqnMNacpML8rumOypAQR7Ztp5J35
OLrOrnkmm38zSd0bYJyimRfoEkKYd4VZbIu3kZOBvQc0uzC9uKKotr6msrK8
sCAHAEQNdmamxYeFBoSGBKQkJ9bXVfX2wQeQ3Vgicom1uLSysECfo1EoqN7u
oa624pykzNSowrzUkuK81NTkkJAQwFTmFsbAHrj4ONq4WPmHBHgH+IAQHRTh
E5YY2NhfSWD2Yzn1Q4JcnCaPtFc996R777+WxT+Nzl119YgzqhfDq5fCalmR
1czw2tUouCgNqSoFRhSvrk5v8i5DRrXP5qH59QRxE3wus2U6pY9ZAFw6dq0e
KazESerR/OqULi+vEvP4Rr/4/BAHD6ug8ICYxOiEhLiQkCB3N6eQYL+05JiU
xKjIiGAAMDQkCIhjdk56c1v9DH0SABwmYDMz0lLi4uLDQ+MjggqzkvKyALmG
pycn5OZkFRQURESEOTrZOHnYuAY5gEANdYQ8Mv8R5mAKlt0lwKamu6gRVYpd
bkKws8d0pasvkJv/WGQ8GxjbaeiT5DWvJpTTQuuXYzH68snjloH1Ijgva3q/
Y2YXzjhBuGQ99i+3jO10zUT754+ERHXYh9RDk3rcMof80/r98obC8xDRNdjM
mErvqErfysG81OIYZ2+7H4ClNPrRxMTIwsLMzdXRy9MFCGBcdIiHu5Ozkx3Q
d1dX57i4mIqq0pLKInhv+9IKIzU5xQ5m5epgawcx83Vz8PN0BkYVPGIFBXYV
YgWzMIM89At3iiryCy/yDM12zagNC0yBlnfGJBR5eESZ13Tn57XEYlYqhNd4
7ecF6nF/vyi/cjakfikGqSrul+eBcNTOy+yXFyHEhYPiksXjgfmDvkldcy46
IrTJMbDOKqHPPb7PNb7XLXXA17fMPKLOEcdrFZ/QMQudaGrP4GQnYhxe0pYH
dQGi/MjSwexHIwNgWuwdrJ2c7Vyc7X29XGFQUztbSytLM/BgcnJiSFiwo7Od
k7uDX7BPS1szcKTA1TjYWAFc3m4Org4w8P1WFubAsz189CdjswcQ2MOihjTg
M10yIQX98VQlaoTdIL2gLOlwOc3hCXkhCflBY6tN6zdk3jWpl1tcPROZP+bR
uBqNUOS1cpK7JDnNq2l90pLv71ermkbWG2d3eii6NtYFGSdu6WKU0A8xnKfj
zIuxCXWvb4FlbKVnM7YIO9WFmejtQbZVNZWm5SV7Bbk+tDQwsvnBxOahs7eN
p7+zu5cjcNqWVuZ2tla2NlCQgMxMH7u6OUZFRQCADk72nn4eMHtLY1MjU1Nj
S6iFjaUFiEsujjBwC7KhNRRiYw01NntkZPEnGzfD3IaE/IGMqoky+FxT13zj
6tnMtB47Ju1tIZYEJXgm5QQPTZbIz4k4cXULIxWnLm3nJzZxYhq4MeX0oFZh
GmK9FKWuw6gbQa4f3+ymHgwR1C1zG+iVAyLvYmJuBzWzOSh7MY9g1gUX2seX
+oWmuKYVRJTV58WnR/iGesAczAMiPDMrEiu7C7wjHaxcjUxgP5pZPTY0eQCz
hkAtzawsQTtMTEwfGRk/NDZ5ZGpuZgE1f2z6yNjCEJAkBECzt/X0cAFj7GRv
6exgbW8HamJpbmEEsTE2hBk4BpjktMZNqkfIG4TKsVyUoH1iE9G+UtS7WtFN
rQpL8c4tjetAZuEZle3zGfX0uMbVWIAOpcsbVOc2suIGlMWEnZZ+eVUnvwSv
aUPLG/DKlh526fwGkntKYu2PULUDtG3k/A4Gw2mMLHcNy3bJq40LS/a09jSG
uj8yd3+YWhFDXsVxNmjcbXodojAuL/ARzAAEQ2tHqDnUGDQRCJkFxNgCYmgK
KN/4oZmFua29HdTKHEwyQGrnYAsm1tbOEmZtZmdnDsIvqIYVzNwY8sjY+gHE
7WFyReDAXB2a3147nTXILRvXNRROejWuRvVKsgfZ5QHxDhkF0R2DpS3DOQRF
U48sr4EfC5clo7WF4zt1Ixt1GFVNn6RibKuTcjDQySrGrTWNatuG1+q5R0TB
KWl5E8M/mRiTdcxtoymaoUJEAtT3x4AEZ9dQWN1gyQC1lcBDjAmHphW4ky/q
Be0oa3u6bbjU0vuhif0PxpYPTaHGwIcAogDoQOizsDQCuKBWliAU/Xe+MLMw
/fcxBqWwsHwMtTK0tjW1tDIBOcLC1hDkXNdoaC06Y1TUObremTHo1zqXgJRk
Vsx7DahTZy9bxlSN/gk24fFelW05neOVcGb+yH4dcqe0W5HVzk0YkueCkNsl
yB2QVZB2u6inyBFNM1JSNaJqGNc1HXzjis4nmNsE6eWc8Jq2fAx8KS2/Pxni
a/zIzgBB7jz6tEGUDZA3UCuXFP4zmuoti7FLWL9dwjPbQ7KcLVwfgCZa2IBw
YAJCkBXM1Bzy0Njsh+9rZWL4yPD7rBqbgG6aWsKgEGsLMysjM6uHMDtjSxtD
cGsKe2hi98DKxzCnNRrPbV48wDFORtoWsqrGwxtpETMnDfPXHVMnrRR9Z2i6
fWy6X1VHfsVgVhenELlRjt6s65IVDCpz8RuFoI/96/kdwsxOUe7IZsPwZl23
MBe5VjSqrxI+IYguRpc3cWtPFzgXU9N69IQKldubbOj04yPbB8N0tPB4haJH
TR2gmTeTotfUhVM8WdtdR0qpJaSnNYb4JTo6+dsaGP8J7BpoEGiKlbUxIHxD
kx8AsYDJBKnQzByMqCmYTztnG1NLQ2PID9ZOpkDjoHaGP5obwLyM40oCivrj
WqezcbK6Pn4FQljRTI0jqSuYz3ux+lK0qqx7OT8s0yY8xS2lJKp8MKuNmdGz
nlO7mIKQlhO2quH8pHZ+8qCqCLFe0rNWhN+s6xTmjGzUDGvLJ3ZqxE/QvFO0
/n4BhD7Jk1nQxMXtsY6JGkt3U0tni9quks07KXUbM77ZOabvgK8W5A2HJPV7
hNVbB5fDvDIgfikO7mGOMBcrqA3EzNLUHPoIAntkYfXQxPzhd+Y0B5zz+Pti
Qk3BrJpAjMxtwHkM2OmhuYGtm4VLoG1cYWhKfVhMvWdUs20GxqeFnV+/nImT
lVJ3G/olaU3M6PLpoFZaShE81NH/UUZ5QvlgdgsjqUuUjJKVT250gtv5c8T0
cd/Qei1a0ziy1U7agyOkpcDD4NbKKJsNsmc47hFScDS6soHjn0/Mb6EEl1Tq
GgHiZGhlb+YX6UGXjA8Lm0uI4Sl9HsAPhDZb+9dAg2tgzmmPPFKh7vHW9oFW
dl42wF9Z2YMJfGgM/ZMJ9Du7GlsYGZk8Au0zM3/0HS8gE8uHRrAHRtZ/MrQx
8Ilyru4q7CI2d5IavLPsfIthgTXQgAbzwqnw0Z3mUX1NKyM6a8SheNKzhOLd
y8rKa/X1ijTNqUrOqI0BeHGqIqSgmLrbS93rI2hbhiTVCEkVVtM6stE+dYxA
K2sJmvpRVc3SSZ/gFC+9JC2okfKrWcYedmEfK3g6QxEjXQOtwNU6ezsAr5va
7h3VYhNcbeNVDI1udaslZ3bQynN64hxjoXZhEADQysPMxh1i42pu5WQEdXhs
YfcYmAETK0Mj6COYram55QM7FwjE3hDqYuwYYGXpbeQcbZ0PTyPxMb205jJ0
Vgo8zDXHwqsIElANyR/2bGJEFZP9Csd9sgmOHZyYbkFSz2paLS7KJfhBSkZ4
YlboyGrzuKqlj1c0uddB3m5Dyaum9rvnLoaGdU0AWo+wmKhrRksqiIp6vKRq
eQu5/XZF/WyRd0haPRslrLXStlDSS3pEupelvRG4Qv8498wO/4By4G2ca8Zz
CLLuKQ16XIpMa41xiLRyirR1Dbe39bGw9Ta39TSz8TCFuRnDnL97SIijmaWD
CYAGczRx9IKCx219zVzCrUFNPJPtAvJd0zsicxBxjZMFVaPpwdX2wZV2kU02
se0mZWTPSlpE9UI0abt6aC27cSkCt1ZC4FV5RRtGxfokpoZ0jhZNqbsHxGU4
bc2QrAS9Xj6sr8PragGRopQVpK0WgHpQUDSmrCOt185pEMpntJMvYs09Y0LV
PaHpYp6MUmSIsFQXS8dHVo4QsGIgaAxxakblPROKQQyvvX+xvnO2ziPdDhpg
bBdqBTpo5vTYxsvsvwFau5vAQCtdzGCuUJirBczJzNIZPGgGdTUEfGIXaGYT
YuoUY+GcYB5e7hZR6RTf7FYwFFJNiu9l5PazsosI7g0LYcUUYDKTqqlRReOB
xRNBxcSghtF473jDqHjP2FS/msFUAJCy1zW204RTVWKUpf3SfMJmLaAjlLKU
oK/uE2RjZEVkXS1FW7vzflX2ZFr3cln9Yomi6x9TdS0c4HhH5L6xSgunHyxs
jYOT/Gfl2PlN3NwGdnmf1DFbGl3t5Z/nZBX62DHSytrfHOZjbusDtXI3Bt7G
0sXQ0sUYoPv/AUItnc2sPSBWbubfWcvLFOZjahNoahtq4hIPcU0y9cuBhJTB
cvp8idI66mZ7DTmsihKUhnFMQDpH9zukYryTB90DW6CR7XYFg4HusY+Copxq
WnJ425NIViVGUdXBTR/drO4XZ7ewEoc3KicOGkl79TPHrcNq4BOqZrYb5raa
eWck3ZtlsrxniFlLWO/AiJsUbxaZ+0SqeNA93MzM7rG9nzWJi+adUCnKoRkN
OhMe7pNp7RRnYRtuahNibub+COppAkYU5m5m6Wry/WM1F2PQwX83EQJ42NIF
YusNg3lArT0trX1g1j5WtoGW1kEWdmHm9lEm7slmgQXQuEbH/AG/YmxABsI1
ut0yHe8Zh3QK6YIFtlgFNkI9qkwC6q0SW929UszdAy3TCsLbRguXj/E93ByE
PA+jLByQZoNI2CfNAneRyiKsqmxAkEfW1lM0DfMb7cyjkaV9HGN3GCdsxklb
p7cG6ftYYN7YW8NBKTBgrU2cjGsGy2bXCB1TZUWDcb5ZMNckc6dYc4cIc9sg
M7sgiEOQpY23ubWHOcAIc/v+obO1mwU4Vi7mECdzcyczmIeVlbvl9+MFg3lb
2fjCbAKgtiFQUy8Du8hHAXkwvwKzkErzpHbH2Hbb6umE+Ut01phf2ohX1khA
BsYvts8toN46oMwKVMPe2yw2MzC9IayPUdrFzmxdjekVpg/KcoaB7qtLQBOB
/OFV5fj18sWjnrmtNsZOl/bDysoJYXYDRZB3TGj7pC/niGsdE3K49Hw8tzno
kc13gGG5wUNzXeXotJBSB690KCz0gU3oY7swU8cwC/sQC2tfMzB4ME9Tay8z
G08LcGDuFpauZlCX7wfiYva9d56Wlm4WoI82vtYAoF2gtbm3kXu8rWuChUuS
sV+RRUyzQzE+tIWWPiCo6RdXt7Iz6pfja2jRxaSQ0qnYLGxoaI2zfbSprZdl
dEZYeIEnSOidy8ltzOgBae6grACsHlJRQtwCUaIcKSskqiunNhsmFJWz2jrA
nIxDvOiWRtb1I8WNrKtxztUETd8vvRqFk7If2H4H6BzmlNuSHlzg5JMFcU0w
i6v0a8AWJlQGAQPpFA6x9v8OEOppBAbV3g9q72MJlg4ABOc7UneA3dzG2xLi
agp1A8MM/b6zgRDApR5J1g6xjz1zzJPgHgW4oLqZ+JbF9LrZrNr5DECh9UtR
1bPh9XNxTcsZdbTMxM4A5yQr9zBnt2BHx0iLRlImnJE4KE7r4aUPyQuRawVg
PkH7ELICwDCAdfGyYoKkeG6jkfeEPK7qph+MEFXdaCkIiYOs8zHh1Thjsw+3
UmPh8cMD6x9A2b3j3ULyXdL+/e4NZ3tmRUfm7c41D5f4pNq5xMCsA0xsAy2+
E4gfBLQSoLD2sjB3NrTztYR5mMA8jMCBuDy09Hhs62ts7WdoH2rkFGvqmmzi
nW8a1WzfzkhrW0lqWIyumYsEOW5QXFW7GNHOjm1jxHWzMrp5eU0L2TnIaOck
S5cwOwd/S+doaPNY9rS2EcFNRkmzMKp8MKXItbyBtfw+SR5ClEtUV48qqqc1
zdsf5paOhie1fSRV39Q2cu4Iw7wcmdYjqFoE+xBNErZ4J1qbuhhC3C1cwhyS
a0LaSIWj7C7x8TxmsZXE6yfzh/ArPTGlfk5RENtQC8dQK7sgqK0/1ML9e6fA
sXB5DPQRoAOZC6Cz8npg5fuDlf8P9tEPnRMf+hWZJ3e7tS4kdfHSeiXpLewo
EA3mLgbGNpubVqNIO2UjipKR9e9s2S8oLx6J8823dQgzdQg2Cy9wG5ivxLCK
sMJclDiTqAdSmINW5oGDVRWRNmtGNVVoYSGGX7h62EuQtQFdmNAPzuyiATr2
FZF7TlLczTEPUR2UbKdoMxPnH8F0RaQHoKhtyPmGERZccDRDkQxgma2Co1my
eAhJb02sCXaNhwF/AvE1cQqzBhzyb0UwB1tpBTjHA4yoOdTL0DrAyDHK1CHm
kWPSd3S1lHgELw+QfCMzsmrRv4UbXkH3bWLGd/BSkapshDQdeC28rHoQGEtV
feNcdlyLJyBSjzij4Dzr5Aa3XmoOea12WF4wos4j6AsH5ekIaeqALK2Lm9DB
jB5W5KFE6WRNCX0Ps3CAx691jml65w8HCfIGkHwXttCDKyV5PUEusWamrn8y
tn8Qnu5Ll49OiZG8g6nVXRKW2TzAqFm/XiQKu2hKHGa53S0J5hAFtQ2zdIt1
tA2xhHob2/iZW3mbgFm18gZEZAHxM7QMemgX/dg1wzi4yrpmMq55MalXmNm8
GgOccysvqnzep10Q0yNNH1LlDSmzUIrc2R34uKa1di62V1zQzszNQgYk1Dlk
t3vldPp4pv+YC/eZWmsekRbi17PblsN7BAkjuoI+cXKfKKmdFTWsysXIMvDy
rMVdzPIRYeFkVPxyXv5qem63f2kXRxC0VRMTo2uc3ZMsrPwfWrkbOgVA+ifq
5eeMg08y+gaOst5H06OIotaVAyJlfXBpe7yeUOKX5WIDOCcEAgs0twmGgIm1
9DEG3bTwMbX0N4WFGVvHPHbJNIuHe7YsZlZTY7v5ma3sJCBhHbzELmFK1Xxw
42p0pyR17LC6U5zYyU0mqZtmtjtx2sqm1YReSXEvv6iaGFqK9CnD+OX3e7sm
G9QTomX32Jm9mvaVqNq5ILy6gKgv7RYkAytO3qqm7NSSN2rmNofY5+PC+3n9
Nx7zAjujgwtOyeIrah4iPKzS0S/Txjb4sYO/aUC8Uzu+AtCL+vnKjGaQeUSY
0faPiJpVbxkTaz3D/K55/Rh8qj62OhxgBH0E4wocC6BKqP9jaPBj6yhj+0Qj
31Kr1AHf+vlklLIcWI4WTkKfPBOpLkSpCiePmlHrxYPrBbidSoQ6r289s1uU
DvwkgleA0RW1iZJ714uB1SQqyrGCnHykU81YSES5OTTMAMsvGFOVNlBDO1bi
RrRgmEsRkjzwVGh5KWmjAQji9keW9Dlt4YS0fEGa1LaiOKUUeY/2fhUv6ihE
Jbglm/mn2rmGmDn4Gg1NtR6+U1A133+NYlaHQPNrFw8wjGMcQdo+oURgeJ1U
DWmA3pnRnOASa+saawtsgH2ECSz8R6dUI68CMz8g5f2uVXORzezYVn5sjzy1
XfT90wRwFyzdsKZa8JIwddw5qClrECY18eLhwtRGWhxQ7RZ+VD0vAi7L7ZMX
Y+WFI7LcDnpEPso5ucU2ugpSORKM5ucTgOTtt88cdEzttffwcxHiQuDAybut
SGkJVdfHOiHS9wjjqh7+1QjnDDunGlzQ4PAc+MLWWFZrREVfanZtuF+8NWGx
h7VNAf0akbUBaqJtD+KlTUsneMbRMPi/eHFXG7WyjlTWP9/mn+nkEGXmHGfm
EPfIIf0H94IHka2wLLxXBS20cTWqQxiL1GXWrYbUroQ2MCORSmC3igckhQRN
LVJe2qcoqecn17Jj+9dz8ZoKQP41KwHN4qh6TiJclDUozcbJc+Er0bWUwBS4
dS7CvZOeipeWDQkKiKqaPn4eUlrWLypCrVXQL/oFr4mU3Q6appt7PDK93gf8
J+t4ePMtY07Ws6zCEVjd/bNNRV3JQZn29pEPYis9p8UYqho/JGzsZJWuHhP4
5+N4Scv8AXZMBaceoFCSphZ6cR+zqYteW4pIcE8xdMt67FVq6FX5YzLSAbh9
sG5lNH9AI2hdzoAyHS5Mbl6NAzOJWi+c2K0d0VUAjCAd9K8XNgtSa1dj2sUp
SG1BtyytgRvRIU2oZoZ3SdMGZJlIefbEZkULPbJy3B/BycRIS4dVVQPinAZ6
VAczrZuTPayqnd7vHFZXoNeKp3faZlUd0ifjNGU/CLycw+8/ksfaQFP4nXMy
fB26ICTX1SnGCBiYcmQiXT28tDsufElj344TxC3co9G5bfSospN2iBzfgCOE
FdP7AyR9P17a0UxKz+n2rpqMLiQFlNGCGphRWH3p2H5t5UJAtzSxnR9ZtxTS
zk0B5goYY5waBJxyEP3QipIBeSFKW97ASWxix7cIEyqXg7vWkrFb+f3KtG5p
chsvnrxf0ytI62YndSzFExWleHnJiLp6+rCjX5w5oivrWE0ZEBWiZOVLV8ip
nSaiunxYUcE9QjO2BgSnJN1LxpS8k7uP5x0Ma24WqBKkY4RhYI59VkdY6WAs
WMxxUc+4vJd9QxnTdpHXugi8JhS3flLfS9S0DorKJnc7u/jFHexiBL+yi549
u9E2sd1QtRBWvRhSx4zokWa2csGMJQCAcFFcGz+2S5gxrK8dWi+mHLcM64oH
5VnAVeJ05d2SjH5FNlZfNKjObuSEN3JC2/iRg6qMQUVmjzCZvFuLFOdi5cUI
bhbjpAsnK8Urq4j6uiF5PlCcluVkkH9H1HUIYRHwMyA0AfhbbxbU97S1Wxr/
hCQ4GhOdkHjHo3QNMqbY1TnKOKk+sHm8iHMwLj6f4Z1OLx2OoSUtU5sDdN0Q
a3d4TNaOYJe1zKe3LKchZMV90qLGlbShtYpxbT1JUw3MSe9aWhMnCq0vxG+W
t/OTAfm3cCNrlgJBL+C8DMJmPUZdCfhzSJHbL0kDqQerLYHzkwZVWT2ypNol
/zZeBGh3tzCGel7He9WPVeYPCLI6mSmTG43j2jqcpHThuIdxOdTJycKpy0F9
MIpywC2LV0Pj283f5/OoZWyjVnO/wD+bXNwalj6dm5b2LWpQq3uEtokCC38D
MJ/ZnXF4Trfi2bLseoF7Ost/Osc8n5jSD7APRtl7I2BQRxWtw+vVHaz0Vk5y
2VwoWldGvewEfmloLatLFl/PDYFL4rtlKT3yDLBB/YqsvvX0dkFcCye2S5Q9
pCwbVJSiNaVA3LvFKa3shFZ2XL88Da3JHt0rgvMiuoXR/dL4IXkyWpGBlGZQ
DxvQkjwwlkhhIVFZjRKWLJ8NYter2pbTJ7aaaCdwgq6WqK/HKiuxmiqC/nvp
gGSsPafLbugLm3gCt016MQ3OmLC9m1YWX+MTmOeQ1hY+q8It745xTqd4T2g4
CXx+f5i6/b0IVFX/+Fq7+I48JCxsWYlvYsXAxcnMd4OTZ3VD6szh7fwuRRw4
pOOyfkVGHTOyXZiE3SzGbRWBBmH1xaO7TcTtJuJOI1JV3CtL71tLA7TTKUzq
lSZ1S+LGdgr6JHFd/PABWRxRl0PeLsHKs0fVpZStuuXzfmBQuTd4ABAtAcm9
pZeXj5QWA4Dk3RZwmpkpIFYMrucRd6sxmlKgYlPqPtb+iPBkfHq9e/UIv7yD
ap/OSYP7Z3aHANMyIeueVPaQNX1Lp8SV87H5Axznisw+HSPJO6hb/e2LWUBP
G5ajBxTZM08aRo8relUpQ9r07rXYNmlkHTewT5E0pM2qYoQilDkdoiSEMhvc
0q47MLrq8cP20b3mdkFa/WokQpkJ+tvKjesUgv6GIWQJAGC/JAa5njggjh/T
FyyetWCkuWBEZ/bacPJynKISvpzWw8rCr1UhRUWYtTKgmPMX3czbIYCuS5TZ
KUoBrwhc36R2gLqJBgu4/YYpuppEs6vg01ldtILq8dQxRc/iFo53PAa8HFnX
h5W3jml7JvQI3rOp+T0MWliHElQyzoZAHEOrC6YvGkb2CpGbWajtzB5VQrs4
ok0U3sAOrmcFN/MiwYiSjmpxW6VIbT5mo2h0vxa3UYvfrEeqKwZVRcC3AKoc
0uTAxYnNnKhucQJxK5+4ldctiEIrU3uFsQRNLl6Zh5Lm4NaKujjpY/r6WWAJ
xIU93GzyRtOgMJ+gqiDqqmlnHeP7DZTT5g7gfNYyQCXbBAnUbeLgagtNhT78
JJrTDOG5zVTNEIbTuHg6zrqc4p1S2Psk0nofdR8/rOwmbQ30cKqJmm6MrAkj
r8PIa/tFBcNaMO31IzslQ9qMQW1KsygMvZNFuagCgg5Ur54ZUr8aDogRiBpK
VwgIB8ABIj6oqeiSFcJBfFMXjByUY3cKO+VJnZIkMAmdouRucdLAelonPwYh
S0SrMtGKrGFN4eRe3YimHNRz6rAVrSoDEkPeawKMOijMHVGWTmzXAbnpEaeB
MQDz0CaIaxXF1qyGjCmQAKDsikZVILArdbPqwflNTO9KFWDL6a0hxu4waCJO
2D6q7hvW9UwdYfqEdYOyhlZWfo+ojLDRNL7dBHiectyAUKRht3I6ZdGtwrBW
cVSrIBqtzJ3Yq4YLk9qFiUhNEUYP2lcwpMkD2g0a2rte2CnN75LlwaUZ4Epa
RFFAzVGbBYu33d2StJrFEMRaOsgUfbLkfmkSTpOH0xQOa0uHteUguQNxGd6o
7BSkd/PTgWpQ95tZ1wiivryTl/DdpUsT4PJ4uCyxR5ncJovFijswwhb1q/kJ
cZPolMA5Gu5nV+AUzZMbnaOK5gFWGV7cSFJ00vaQWF1LC7cQIattZRUWT8c2
rqbj9XVTx/Dp0zY8iJy6HLQ+s3rFB0xmhywOdA1UG0ghYj23bz0Lv1WF3agY
VOeBRQNzCBi1W57fJsyGS7OAka5lhdZxQkAHMdtFgH+a2fHVi6E90rTOf09s
pzCBtF8FRAfkDoALpSrul+WyXqIAgfQK06e2axlnHYzzLuDi2tmxgN+6ZHEV
y77Vq4FNosh6ftj/Cx4MSho=
"], {{0, 75.}, {75., 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{75., 75.},
PlotRange->{{0, 75.}, {0, 75.}}]\)]
Out[15]=
In[16]:=
testSet[[2]]
Out[16]=
In[17]:=
trained["TrainedNet"][\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJx1nId720aaxpXby26STS6b3btdJ7nspcfJOs2xY8Utthz3IhfJRbLVLcmS
ZcmS1StV2AtAkCAIgA0Ei4rlktz/d+/MB0AwncPzZp7BEKLnN9839QPzUdfw
1a4/1NXVnbf+Y3lvYBny+Zf9gRW/3wsFAgF/0BcI+f0RXyjsDUd8wYg3EF4L
hrxQJBqIxoLRaDgWiyAVhKgoioIgxJDERVGKIyWJ8QQkJKSYFI+IQjQuxqRE
NC6RkCe58rKQSCF1hFsxqSCtlaRAcSkFiUmZSyHhr+hPnHJfcMUfWg0EV/2B
VdQ/FAoEg36msC8U8YeivkjUHxEC4WggHPEDLSaEWBqLAI0EwHg8DjQSkTqA
vP5x0EXEuEMH4ZbohESSAN10L6O5C8VEugaQHnjxT5JcKQIEHVNwDQoEmbGI
LhzzQ8xqtsmiABRCBCjalwP4IkUyLIiOvXALOQjufI3V2KeizMzkspfFKCmx
+A41Wa3Gvo41SaDzcTSYLBDyQiHYLuzDLTyTAUYDkUiIoUXDkVg4LEYi8XBM
BF2Mcb1AJwCQRIAcROK3SbdehkJhjRMyRjvvQCGzU27jvOzD7kJvaM0X9kLk
k0jD4SC8McQV5rYDV1SIRIVYJB6FOGNUgDNyLkEkBCkcj0ckCXIs+LuyuHhV
kTqiW8t2BMUzzmNUSLCOgdw+7G4xNyAGExJBsW4YDgRjgZAQBBeMRYA0UEQl
CzNqDylko5AoAo0Y7XFDroFyZyICEyrvxkSeCh1GCCXudvhdF61J3eCExs0X
ZLaDoiEIdBAZy204hgZGlzfWuGVETEC1VqO6cTqHy5HbpqSavlbbxfggAyFD
LLGEAjlmjctpK59Igy4QheGCJKKDyThdCFBhFx3QmPiQ6B5PnPHfQXPMZ5VQ
zQlfSDqy3JIs+6KZGMXvATquS5iMMZEmQHb74giDj0AHbySR1UgYKgmQ0Qkx
CFajGQ1jo9tqjtft4Ljy1keiHI4lHNu5jfhC53L1PmcwiaPazkcMRI3ElaiU
5nJgtVh8B9PBFyTVoXMzAo2mAwDaJhNsMS5n/Oewv+eTvzfs13qma2ypsYvj
qHy+2+mPNteO7DZJQ7jlgGpUtDCRJwvahoNnsokAKbwUw0soxgQKKBRz2y4R
igHT6nTIECaROpmdcYZbsAbQMZ8zHYDOQhNl22oqVZgJRHGNyQWIP4knVZhV
SGpIXeLmjqcdukgsyKa8GKFh6RXlErhzWlZzDSkJR2zc+H8s6O6D5KKOczq8
Vh+0+x1nkalnkeMxQBsnJukOIIFYU4l9WwuYUMMiHDIYE8NYg5Ewg5Nopou5
Oh3NCI5/2iUMUxCTkGM4Z1KoWb3YfTBFcuY+Ds4aPCKyLkZc3CeZW4ZFnr5o
QVTebUrWNxM6VEMqkAclIqgpxkI2fUliIhG30mQinpAgrOuwsMRoSam90mMi
BDEuY2XonnBrYPnKTbJnwB06B5CXKKg/ASIficsESIqA6CUXdQOGJQ1yj0L4
k50BNSWwTCouywlHqVRSUWQolVYUlkvhQppMyVBcTtUokUxDmIYc1Y7bScUZ
2y3xLYA9JihkuJ053R483SD8mbQ98nAf5uCO1ciZmRKqoiW44lYGxKoF5UhV
lXQ6papqOp1W+aUgq7FUVjUomVZJKUVX0hn6xmRaT9jfDkkpdec2pUOS/DuF
VI5xw0khNpKkMhhG2LCZ1GjksScUnk9kCMfNSK2hahKk6bKasZTWk6qeSmsy
hAykkbQ0SddVR1pGh1RdU3QtndEVPYNHUQohT7dcWYhaI62yRqASZCC7iXRI
AinPUPuAkYtRJ1JZSc7Ek1nc1gjDEcQ/Ys84wkeangCgnklmsrKeUxxl8mk9
y5TJqRlkUFkbKpPRSNmsDmVyWcaYzWi5bCabh1BE0nL5dCarZnNgRLlRLOl4
TM9q7HvzaragZwqajkyOq4DCNNJsgfKoBxohreZSak5OZ5MKWj+fUgvIQ4pV
koXRkeHK2Wia5SFyBmgQqpDNszSXV/IF1Et1hNt8Qc/lWcoyuUw+ny0UclyF
PC4DuXy+UMzm+K3rQgGpUDTQeefmZtCp8bzOvytTMGoylIeyRpEpV2DKGJms
kc3htpjLm0jRLCjJ6KxxqD2RQaGeMZBaDcXbR9XynCgN5QoyU14hrmwubdNZ
aPiXWSafJUDDyDNAgwn1B0PBMA3XhU9Rzj4yCqZpaprW3dWBHm2YRav+tnJF
k1JHuMUXQjnWaAZkwXLlbKEcSRYQyOQ4ddagJsoUWFPgFkQFQzUMtcAxuRhU
wczAJtazZC+ep0pRCapKaHmzRDW0MIslpJBTYXZbKHiWFor4i5L7IxiLGbho
liGU46sg+hL6HsoY7BuKNSJ2J5PLG9QsrGV4CVMhDcBCXoOMIgkUjC7vEMEI
JJ5nlWQqsqoWDXfLU90KRtkoVqyKlSsoLJWrcNHxRyNmMQdrsmdKZc7Cmgi3
BFgjs1ShDAH+fyranxZs5Tm+1SYwX1Ej24EL3oGaAoQoTLQfHjHylGFpyYTM
con+dXZvZ+jLrX+L/xOlkoVZrlbgnIsL05WyUS7v1BwZJmRwy7+XMkzsOyuF
UtUC5KIHzGK1aFToeYM/WTSrTpMW3TIqBMiMaKjc95nJmDU4Fwn5UqmIipVw
Vcqg26kb106bc1Grls1K0frX2cNw6Ymx+2ZBrVbLzl+BvFxZZ+2F7y1XnQxT
ZdMor0OovFlax22pvMHyxWrJXGcqVfDnZnW9WEEjVPEpbkv8b0t2o5VLG4Wi
kjdSoGO+ambyRd3q+o5bGsyVwMiqVakw29mA+AAe6LgivA41YXXg9QQd+4dK
Vg03N6ozY4NrCxPPnm6hrarrm0ArrW/ho0p1g+XLG8gjBQvH2SxylStblepj
ZIzSRr5osZB92ZdXNtAIeJ7+1hHQmCqboMPgaQ0vRZ0ACy/2Puph6D5sSMAt
d5ad3sFFgwP3kxddrrROhQA0M6mBzhY9JT3e2gA8AULIcG1W1x9XqsDZAh2g
zMpWdfMpy5Q2SpwR6cbj51uPn5HwZHl9u7zBHrCbZYMMTRmUA5DJBWjPSPBb
3cIsMLpCNuXxTOIxcmCTX4Cweh8fKyDmjeiGpjWcOm4MJ9/eqET8yxNDPU/X
C/B07p+bOyYz19HmVDHOuEEfIQ9w9gBnNCvbsCm0vvWssvEEt0Aurz9FU0DI
o3xz+1eIPbP+jE98Cs2GfAWhEp0jxlhgtlMUYWVlMh73lqsZ0+XDGE2BQ1OG
1c1LFrjTVRloCQY1tjfLQc9UdG3uyRYMzRidLub4mGMI1j1LFQVLxlSaygFY
MDcNY8M0t4wStIFbbtknyEMwOolao1J5wuf8NK3NCJDmd0ox3UPORI/p0h+Y
jsYWy6ZimrppD0dFfqHCNMUzZJ467GRuMFbNwrqhzj8aVKUQYInRkTXyMHNb
QmfFkOXxeARRQrdlww6zMuuYSLk3Uufd6X3IoxApTA9GvuZNvbAKzSq0jLGl
WcqxJVUuH19dHvN7Z1LJQF6Xcrpk5NRiTi8VspViHmNcMZctZHSAbJQKVT46
McvavLDzZtlICf6xe3dKmfhmhYNXyhAGQ4xU7lmDxIdEEztTNBRvBwdkneT0
O5PGVV5IjmFWN2nlrjlbBlu6tRtQdpbWfEXMFnW5ZEL0Ly+Mdbde7rh+4dFg
19Rw/1h/14PuO/e726CH/d0hz9RwZ9P4vTtGTqFFHV+45SF056qprU723bt9
YaOYQWdkhkZHLpUhNl45C5WcNY9nMjnsRlmXd6ZCl2hSKNnzDsfcsKeYsoRN
OQ80YcOaUiSktAekHR7b+WHLyHdJ2OsQcjajYMCB+ZSYVxW8uhTMyZGMFFQF
XzLoja7M99+50Xqx4c75A00n96pyBL5tLdHzGK/Qo/VNUy2Inom7zaP97etm
Pod1pLGzqGMrN9fSBV4ajQrYisKWjlndJnZu3esHWJCrHE+IoiTwSIpAkiQJ
qRCPiFLUOrhIxBJJIZmU0AJpJaGk4llNzmeUYl7Lagkjky7oipFJFXS5mNXM
nGZmkoJvaqTt1GDrL5WiqnJ/YNbPacV82swni3o4Ly6EZ+/dOH1Q8i+XTLZg
thbe9hrS4KS0VfEHA3AAvoBn7LQMI+MWX1zFFWtWMsUSbcxp34oFP9vDwl6q
XMzJpWzC0KScEs8ocU0WkvFIPBaEFCnimZuanRidnxmPhryzE2O49S0vCCFf
2LcaWlmSwqsAnLzbOHH3SkEVdE3OYL+piroS0+VgKjS7PNYxO3DzYcel9ovH
QwsT6MJ0ZdiVI2XZJoHtRDCKBsMh0GWzWWdz4Syza1bdL0tmxw5pbEsh7EOx
Ic1l1RI2iyujiYV7mne8LK0q/tlKWoivzZ8/dvBiw2FhbfHSsSPH9n57on6f
d3bycsPxQ1/vaTjwQ2hp7nLDzz/u/qyh/tuEf268p+lRT9P0cPfwvTs+z5ie
XCurwWLCE57sGrx6uO30/sGbZ/2TQ0ZKLGpKJq1k1TRGJ+zr8tgR8boxzzXM
cEhIJGTkgcz2hnqBUuwE+e6J7xOzXHxXRTspokZG0bWUphIgY8zoJSPzoOt6
86FPbx3855nd75z+atedE/uuHfnu9pmfB25dGelsmejpWH04BMXmpxdHhryP
RmPzs57RYd/UGPKe4cGpe12LD/sn7rYujd4NzD+cGelZnOjzzw/23zp1eu8H
9R+8tvvNus//XPf5O3Vf/P3Nm5dOtjSebb5w+lbjxTvNV8eHBmbGR2cnpyYe
TfrWgkuLq9NT80IsAUZJSsZFOZlQ5SRmRj2lMPFMBrt7bPzTalbVsMl19r8F
XcsragoeCS7YLs1SDXP65GD7lf0fdB/79O7xL+v/65Wf/+cvDZ+/t/cfb373
3ttdF8/M9fUMX20av9myOHAvMDkOKNXvTSwthiYnorOTWmBNWp0f6W4VV2Yk
77zom48HF1fnhpcm+4fbG4/vef+LN+s+fb2u4au/Drc2BKf7ViZ616b6A7MP
Fkb6em403m+/0dHceKvxUl9b5/DASMedHr8vHAmLwWB4YX55fsazuhLy++Ph
mBKLa2IiA8WT2UQqn0rlIFnOJpM53CaVHARwjDAYZ5KpBB2UqXoaLlrOJAab
Gg78o+6XD1878cFrh3e9cXDXmz9//J9n9nx09LN/3jnRMHWz9d7ZS00Hfrrf
dHXlwaBvdLjt1KlT33xz7dCh9nOnYwuT0vJMz7XzdxpP3bt9bXKgU/DORTzj
6cCMvDLuH+mZ7by6NnxzZajZP9axPHS7/1rDpUN7jn71P0f3fHhq3+5LR35o
vXB6oK3t0eAD37I36A/5fIFlj9eztBYMiEI0LUq5ZKooKyYWOIpaTmllLVvR
c9VMpgLp2Y1MblOlknzl4ejQ6NiDyamxqZnJmbnpuYXZubm5wKpHWJm9VP+v
n3a9evDvdV/+oe7A3/70067X63f9+dw3n5z4/OPuE6e6j/0y1njl3snTDy41
zre3R0dGmusP9p692Lj/x/vXGtvPHGs5cejmLz8Nt17ubTqzNt6/Mta78KAz
NDNSFH2B8YGB5l+++/urX75e98PfXvv0T3X//UrdZ2/UffnOq9/ueuP79/+j
/vP3em823mtrWZwcl2LC4qIHjupZ9oXDshDPJuRiWqtqmQ0tsw5l8uu53GaW
c2XzWzljM1/ccjQzMwXNzk5PTk9Mz07NzM1OTk5Pjk8szcwE5yeHrp9p3Pth
/T9e++7tusPvv1H/jz/Wv/f20Y/eP/Duu0MXLz84feby7i9Pffzp6NVr3SdP
tBw91PjD3lNffbE62DPTdX2qo2ltuGu+75Z37O4j3PbdGW5rmnvQPdrVPHDz
XNvpAxO3ztf//Y29b/37V3965avX/+3bv7321dv/vuevr37yZt25fV80nzhw
5NvPMawNdLXf7ey4PzC07PFFo6oo5aVUUdGrenYTXIDitltnym3mCo/ddJDX
611dXfWsLK9615B6llfX1nzLy6tLuOamJf/q0vDdlhPfH/34zfpdfzj47h+/
Rh3eeePD1/64//33Hl29PHjm1M0f91/4Zs9Q08XFe22jt6/0Xj4x03d9buD6
6J1z/rGupaG2sc5rEz0t0/0dkaVJcWUiOte/fL+p69R33r5r3Sf2ff/2H35+
9z++feOVT1+r++DVul2v1B389N2L+7/c/ddX//XuW8d/2H35+MEzR37qutUy
P7UQCEgRUY8mc/E0jAiHXEdKUhnyBgBhxLyxbRhbhQKW5ds+nw+Ma16/1xdg
b5BAXr8loHpX1xamWi4eOfPDh0c/+cvBD97at+ut9/+t7tO/vD50/XLoQf9a
X/tid/uD5kuewbaJ7qbF+62ro23zg9dm+y5Exlv9I9e9D67P91/zj/d5RjCY
DM896By+c3q29/yDq4fvHN8z3nJ2+OovvQ0/Xvn2s8HLpzvPNbSePnr95wOf
/PmVT96qazz0HYbihu+/vHD00M1LjQ/uDa8uR4JhJZLIghEdUNMqSKknEiAE
wGxhI5/fAGCh8DgQ8EHBYDAQCnr5y0y+UNTnD68CzhcAeyTgX54dn77fc/2X
+ssHvz6z94tvdr3VsOejQmjhfvPp0KNeeWk0MNE3d+9mYKo3MNm9MHDVc/9i
cPTSUOOXs637gveODV/5uvXkN5JnbH64J7wwFp67f7/lVOe5esw+wbFu3/3O
4Uun234+ONlx0zc+ONZ+/fO//unAR/95of7rsc4bZw5+f+7wT81nz964dK2j
tavv7ujoI49nJbbii/sCyVAkHYlpMTGDYSchGxh5YMpstprLoVeu5/Ms47yt
JLBcjIXGYlI4IoasdxEifn8wEgorkjDc0/HobhubCtuaWk4dajld/7D14mTX
lemeK6Hpu/6JDs/wrbn+y/6xm57+s2M39i51HFi4/e3I+X8OX/xitKUhNDMQ
nBka6Wq+33re9+juqe8+aTr6/UDTWdjr9rEjA1cu3jl3oqPxJKx2+ofdoIPh
9u/+eO8Xn506fKS58dpQ//CjMQwV3oX50KInsrQcnV8MLSyFkUJUsrwqrPkk
vz8BTw4GE6FQMhZLY7XJJWEqTSaTCUykPGzGIoNSnL1sJmIYw9pUSEgipuDV
uene1ubJ3rYHty/3XDrWWL/75tGvJzsvBMZaH7U3LN49N9PeMHa9vuP4x9d+
eGu+df9k0zfNP/5jZej60nC7b7xv8UGbb7S95+KRaz/vu3Hi8Jnv9lw7euh6
w/E758/eOHOi7eLJHz/8r33//Nvej96r//pfp48e77zdhbkPswPVORBI+nzS
2pro4yBebxxQQPOsiYsrsaVVAZml5RiQPZ4I00oslUrWSOFXKs2lqNhNQ0lZ
SSRZgCmX1eenxod72z2P7vsm7mN4vItOdOXYRM+lleHrw82Hbx7+tOXo52PN
Py20H5tt+anz2EeDl/cvD92c7G1qPVffcfHweNuF3saf7145c75+352TJyc6
uh52dnVdv37tzKl9n3188IuPTu77uutG89Too+VFbzScikaVSCSNrgeFuUKh
VDAooxAZOCqXvMZTrz8JrfkSPm8i4JdXvRLbE7GYj5xOp0jqSxe2KlgG0NGB
rKSwu4E1E0JEDAc80xOeqbHhu7dnh7sf9d141Hl5tvfaQl/zjaO7bx78eOZ2
w+kv3/EO3RAWBlbH2ufuNy/cv3n77MFLB79dfTjwsK3l3pUrTUeP/1J/+GH/
0L2O7s6brS1XmgZ6etnrRHFFFBT4WCSSwvTHMVMQMhAvTzPYSDoQSpHAG46q
Ibs1UIIUGxlne8uiSDx4xGNk1vJety+23eCBITQHW5Znchq/UnJCw0JIiq0t
TEwNdmMkWRrpXhnpGm0933r8OwwmHecPDt0+13/jxGjnxbGuS7fPHe6+crrn
6qVzh+obDx/tvNI0PTIOoqQgy4m0JKSw1Ewk9Hhcjcd1SdKQUl4U06KokQRB
FQQdighpKBZDiQ5qBh7TiBEppOnY2yZYfFBL6plU1g6W0S4epM6OnsFm2T7G
CYFRZJAaASn2szlNTcVj8aDPOz+xPD400X9nqr91uu/WeHfzzL1bc4OtswMt
ox1NjYf3n6rff/vqlbW5RRYs1PIqVstsS8F2FVg/W0pm2LpaZiXJZCYpM3CW
SWaQkaQMsaMRkOfgGaJGBgI1lMnKXOwcBoDI2KElFlQCLzbjLI/K53IUEWOM
+A9blTw+s2KCJNqnsBNDPKin0/Hw0uTIWG/b7FDP7FDXeN9trGTOH9l349wv
c6MPdVkpFkz8ibPyp4gY9gUqkLW8puZ1rWDldStDGwdFyQMcqcIDhawRZJTk
sdKWMV8kc0AmscggCwtSpCxNIUKKEtKZIYua8ZAZ6OhoBXtPCv/RLYW0rLge
9mIU6GG7snzZKGTSsmduenHy0eTIwOr8ZG/7rQe93WIoVCoYoHO2rjlXUIwC
gk5MkPJaznDykMpCgQaBI6NpRV0303pR0YyUWkypBTuP6qoOTn4ngsZO1ejg
l58W5nlA0HCfClIEkMHykJmTWjEsXmc6ecDz8DwYowQnzmj4mB8wmu7NeM0+
PV8oQTkrIoaMqecZbD5nMhVKTviPGiGbMwGoZhgjhIyew62BvBWVMOgo28o7
Z9pEV3PCSYdg+KedcJUD5ZyWMBXKhMAPhaw4Ff8m+xSFZQx34I83305M0Dpy
KVZ48Iifn1NQ7MUwFpAL+XIuXwImRBktW9T5rRUftKDUnegSD6I5Z9fFYpHC
tYTphCTo383v1NB17GNUGKNdGeeAyHnAsCLC7sMi65tfiFXx0AaFR+nJmu+k
f4j/W+xhADIZlRyLnVWc2Blh8hDhTkiTA74IZRbZySaPdVrxF9ehVs1pXg2U
Y5fac12jBNGTTgSQhcnsQ2Dn/NNdYocReayQy7Z1tcDRoDyjdujIfDWAhuOc
1LBGuVQomc4hrfHiwV3NWWXN2Sw1iHUmb1bcdaYMWY2CgAYxljdK5ro7LAgQ
FqYps1uzSIef1qdEVzTXjeJOxkWn8fBu1g1IMQW32xAaqSaw67Sq7VoUWrIi
hjWAFpRpnb1TyoJ9cMjyeqn02ChtUYTFpKgKD0lAJs+z582Ncsm65RGKTf4k
BWW2rMfMLbcFawBBxmXFiSh16CiO4JTXHDibOyFgjmBb0HTZy/nUCXcWzHWI
x4m2CybbmyM1K9tOFIlYyDQERX8FkHIZf7KZh8lMVuI8Yw8yL/VB602DAg0y
FAos2s7poDl9ivzTDWh7XXUnIkY9CP7J4rlWEKHI7VLiAdxSFYbbZio/gczq
s0Jpu7T+fH37NzxW3Xqy+eT5xvYzs7pZ2dxe33rGGqRULW/wSNnGk0r1MQuh
buAPN+EMpXUWWCRAe6jROWPWeQmBXjywLt4TnXC847Q1g0bNGwWOB+6EtnmI
hIRqOIDV9W3UjWwHumLlKVIAZgobRuXx5vav28//F4BbT39FSqTrj5/ilsqB
/3j7+ZOnz7ef4IGnT57+9vTZr0hdM7vitqOF6bKmM2XQVEiDD8WyeXejoFWZ
Rlo+9e1g0osBNErYMa8quSiL55Y3ndAe6z6Vbe6QsMtjnmdmRR4mK68js/n4
2W9cz7l+A+Cz57+Rnj5/Bq5nvz5/hpRdv9J7XM77TjUTvXs23HkngfdNvuK0
bErjCQ07yDiA7uHdDWjTWYD0WoUNvklDStHuXxhw2FjB+yb34Q1gci/dqm49
hn/CXTe3nm4/eUbihnv+5Amje/78N3oNz4liv4zpvN1EC5s8bs2C+52ZnXnE
LLp7q/tNHid660zfrFnMYs00sTOu8lCmM7q649omG3DW6Y0LntnKF9kQhAxS
sMOZmes+BuyvW4+f08t4jh3ttbdiv4lnBa8duV8ysbyUQRm01LGWqeS69psY
tW/UUJ+lF4petrJbdrOYFm/VeUuBei5L+YRSLD6GJxMmmZ717gprDSUtQvTW
KLaE2BjS3hD7JhKF6blYhJctwvN6ge8vKKxpFHbcmJbf9O4QTTHOCwluzBpr
viAKTBerOysEeknDily7fJvbmpAxIVLI3h3Upgh+OLJGikS9McEviAExHpYS
0aQsyCkxpcSVtIQdMWdnoe2Mnspm0vzlUJ3eF0Umn9MI1t5G5WzenPMu4guL
TF5JwzXw2rF4+nSdlmo2MjUIeSy9kVJxL9ssx6alHW8KBxMWDIY9vsCCzzfv
9y8EAotQMLgcDq9GImuxmC8mBCH6JUFcjEjxaEKKJROCnJRS9hvdaUXWWJhb
syOYLGDNlbPeGmVXge81Cs47lvZuy9pWOGsh97LBWce61581Frfm3OLvLFnL
3KWTqbCsRFKpSDIZIiUSQUkKxONBKBoLQJEoUzjkgyJhPxSNhCDrd4XhCCQI
Qjwel/iVTEqynKDTOVVVOXuWx20JP+d6c5beeCzu7BQsfNN0LeNfXibVrOex
VncY3a+gAFAUfZAg+EU4pxhAJpEIM0nRlCzKSQGpkk6kFImUlEX2YwJJhOjn
FXGSHeK3fnPBzpP5FYswCSgXJTHuHMAmU+xNfnrLHanTCDo7Asm53wJ1x6Np
4+naP5p2rzdr9mIWeLEKb4QrRiP+GMwU9iEVhRAJhUIsBM8UxDBclH4nAesk
EnG4qMzNxA7CuJfSmSo3nMzPHhXrLf10in+akmWZf87gwCglmVjGvhIJGdjs
5Fnm/Ow3DOkU+z2DFbnUtAyd5lEEP8uPgOxe/wL1Dq9RCYVZRCIU9Ab8q+EI
+7kuOSEyMQF0MdH+MTIEh6RDfhhKiMbILvQrV6eqloGSSUaUSsFL02kyUYaO
GXVVY+y8yuTA7PCOPwMWduaMlrIv/spHAoLjO7K/H9+skfBdEPkAgVO8Hrw+
31ow6A+HAuhTyAQC6GjoboEQ0nAwFg1DyIAuYl/gBB3cMBaDN4q4JUa6UEgZ
1I25JathnJmGGwbUMCKB049NyNDcV3VqBHYGyy/FulQyJeSYlX2PrOBr6Zut
CL7dDqwEH/EWCIZDoUgQmCByrjC/gvzCrdfrDYVCsFs4zGhZmIb95DUWZf0M
RPQTepF3uTgKUcL/uTi3Lvs1kNP4vCbWUGT5ZIJVlWqL1MEhz3SsA7ESJeNY
zYq4u265A6gpWYPkpJqQ2NeGImHI5/P5/X6AICVGygSDYVQYdDAcp4uGrAsF
sUhYjEbiEfbb7GiMX0RNn/JC9hMvQZTofyIg8gxZmZqFmggtb7eSxG2eROoG
J9uxDK884Tty6CxS6wA5Q4VR+3d0qAnSUDhK1gmGIsy0AAzHkAnzctwiQxUj
S7HuyI3IvdVCAHUoGOO/ReQ/4Y4wHGIhCvZMTIoJCfIK+qfpC8n6qIDzJH2z
NQfBAbg3kkM63ZN81e68KbcD/B/TUNSS
"], {{0, 75.}, {75., 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{75., 75.},
PlotRange->{{0, 75.}, {0, 75.}}]\)]
Out[17]=

Check unconfirmed observations:

In[18]:=
nymphUnconfirmedImages = Map[Import, Normal[ResourceFunction["INaturalistSearch"][ "Halyomorpha halys", "SimplifiedDataset", "QualityGrade" -> "NeedsID"  , "Page" -> 1,
       MaxItems -> 5][All, "SquareImageURL"]]] // Quiet
Out[18]=
In[19]:=
trained["TrainedNet"][\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJxNm3dwFVmW5md3InZjdmN2Y3Z6unvaUE0ZiqKg8FYYAcKrMMJ77ykovAch
QAgQHgkhJLwMAuT9k5733nsnD1S1md35Y//c333ZPbHEJSPfU77M+53zne+c
k3lz8LZDWdv+/u/+7u8W/fW/2He6rGaL3ut1RyIhs9VkMOkdLjvDF/CGoyG9
UecP+rp6kmz5aLKYbS6n3e1xen3+cCQaSzhdHn8gFAjyIe7zB91ur98fTCS6
otG4x+OLx5M+r9vtcnDyQMDn93tDoUBXV4KdDnknZwtHYnqDSaHU2uxutyfA
jtnmttg9NpfXaHVYrHbObzJZ1Gqt0WisqqpSKpUWi0Wt1egMerfHZ7M7mSuH
OVxOlUbNMeFw2Gox6bQcorBaDB63jWu53U6z2RgM+m0O64OC+3JlJ+hcHqfb
6wKU3WkLhgNgjCWiLo9bbzbFu3tiXd2+UJjzB0MRgdphj8ZjgVAwEol0d3dz
lVgs5gdqMIjpABWNhq1WM1vJkux0KuRavS4cjXj9PizDqeQKjcPpdbgDNqfP
7vaZbE6T2Wrl1HbAu5m81+t1Op1gDIZD/mCAyXh8XrvTEYlFLTZxIIfpdDqF
otNmsxj0WpDaHWaLzQwQWWe7Rqf2+Ny4DJi4EieyjSdj/DUQ8rMFcjQeiSXi
Ehaj2eR0u7gEM+zq6dYbDVw0nPpntVqZDJfr6emJx6Mej4tPDofNH3AHgp5I
NOBwWlwuBz7lt2CUfAETMJcvFDXbXQajVac3MzmXmzPh91B/f7/ZbNZoNCaT
KZlMYj25UgE65sOl3V6PL8B3fv5qMBj0ej1IOR4scDIUCXr9HMBBbnBZ7Rb2
8RoAW9qadQZtd3eSyeCIZDJuthoqq8okvADnJyaLMRILc2KLxRSLRfCOSqWA
FVBR+ghA0An3+Zw9vYloDH+Z2GcH4BwDTJyCI6CrJxCEn+AFnc3mgPM+ny8a
jWIQBsf7fB6tVgs3sAfQtHqNQiXn6gwmyVUwLMc3t7bIOjtgKi7AEfAQaCAF
DrRkAIGP1TVVrW2NwZA3Fg8xn3DErzeo6+rfa7QKvmxrb5J1tPAl+1Cd8zNb
oLEjBR0X5bRwG1NAhnA42NvbjRP5CUPshIPADwQCTLi6urqxsZFwdjjdoAOs
xASn0w7lOCEHc0IAYi6MKZ0fL2DqpqYGubyjvb2V7wGITWAsvDWaLP5wyOFx
e4MBo9UCOiiKU3BoXUMtrgFCp7zNajMyH4/XAbtCYa/Fqnc4zV3dUZ1e1dRc
19ff5XLbcC4zwWs4WlKkRFcc2sMcSCixGph8T7DboYndSuBLkwcFGAkuSEU8
SrrxHwBxHAc3NtSplPKeni4MyMAsBDUAnW4HlJNUgkvzp0QixpZIAanBZLS7
XSqdFnRWpwMBcXo92Bxr83MujcAyeZSWrUrZoZC3x6IBnVbRlYy4XdZQ0Gsx
6yXgUqBJACEbI55MCGixBMHFR5ASKeyAEVLhCI5k4Bf+OVP/1Gq1CDqfOAMG
Ab4IVb+3pzuZTEScDkt/X1eHrKW5uRGH6vVQVY0XyipeP3/5rOJNOdAkiWby
fp/HZiVmVeDCfcA02axsO1VKPChsEvRjB2Qhngj7/C5ChmsCqrGh2ud1oMBu
l60rGbXbTEySINXpNAaDjqkK/cRXkTBhBf89Xn9Xdy8wERC+6RvoZ2u2WhAE
pAPHgUsSDYvJimdwNhQVkuj9qwU8bqzuCgY80uWwc3NLPSGDSUVU+j0qjfLt
+yrmDC5swvFIaDgUACAHS5oJKLwsSGs2kWLMgq5iyzyxJPEIEziMUC2rKG9o
aiS68Q5mBBpbLtTZKeOKaKbQgQDi42WGiJ6gUyoqCU/+JRIJ/prs7oK0HAAu
j8fDr5gbKFBoAgrJ4le4GJ0PBnwOi7GzrdnnskeDPofdFI8FCZNYPGh3mdVa
BWaTBOrjT5/YVr17S0IhVcF2TMcWFSXumDwQlGoVAIV5g4H2DhniI7Q3GJCk
FWqlVEiPOGNh0hBeJvSYPPNJpQWnpABoF+otpUVMCsegTUoDvb29vRiNc2JM
Eii/kXIlyYuzYpXUhAPSmbGM0aBL5Ws7HiRAoGg8FopE/Z3y1sq3r30Bt9Fs
kPSE00pqDECVShVK/QMgZwNayn1mZg46kXkDfibJr5gkX0pKyDGohyQaGJmZ
EKSEOcaXdAOkUiQSwhzMeZg/soZfCA3+hO5DYLATnvyVKaHn8XicY9RqZSjo
B5FESwyFBCkQxrYWEQXkMZ8LfnV3cWGfheRm1pFrMGlKrER+lBDJZDJKnRQr
4pgOpEweaIQq9IMzia4kRuB0FD9IEDvAhDbdvV0QFSZLciEVJ0wD13Bp5oBh
EQHJieDFcRxJkGAEaIaScCRX5LqSB6XyALipSPT99NPHgf5edJKfw1iOBzXW
w+/RSIAz40f0DzGnODGatGyRd3SG3xLICoUC8kMYfgNPACiSqMMB33AxmiZt
cY2wajwGORmQEPelokkkSrI/XkthxPJhzsxMiEFhUrMe8xr0atwk0ZU/tcla
oSv+haIEIJSDn+gJl+CcnBxDMSUgS4aymI0iWv1u2IhuI86kVwoDLsFpOUCp
lGM3zs85gaZRK7UaVV9fD3/C3RgEAxJ9nBPmWO0UCwIgE2b+hBh+xFnYFkqD
jh2fCB5fyuA+oVG4Gvm0UCnFoRyzYjLUtEqFDCdCHuwciwYFl1J5mZkIVzps
yUSM/IVNuLSQ2QQFX7S7twfCYGS8LM1fkj6RppxkOB1nQ7oTyQjX4jxINA4F
Fz5NHebS6zTYvrsrYbdZGB0y4dCOjnbOKS4Upop2tMs6QcdAbAEILs7OECSM
hN2pizFI0FShkFmtVUnFkhRueFje2YYUswNYWAo65sYxGFlKuxgpHotwvJTQ
qTFAh92wMIShWOVL4ggUhGoqDO1EHIbCrlL5REQTI9QMSrWCM2Mou5WTWZsb
m/xeH6RjgDSSqnPASC2KOAMBzSx6/ASngI4B/fCaCByPCDQJZpusncP4K2XJ
p58/Irai6bBZuArzx9TQaaC/m5zIACDxwtyAw4SlMhvWJVP5N1VrhTEvtkW7
8CBEJQDByGE4yC3CLZSMhkgHiXiYM0NRwg0NxPjExcefPvBzws3n8ZoMxgR1
bjDE+fEd22DKhqjxmzdvwEgpLnoBr5/LpVRRSAezaWlrRb3hKkaWCvUnpSWo
gTQl/Njbl3S5rRQpFDO99AqxYBAiRQO9SfzkBSAhybanOy7sHw1TuSSpFSIx
LtMz8KGrr1/UpXQkiRBiZtTJQ35saTEaNAajBgdBNnzBr1LJXYoSD56FBriY
fewg+Rqv8ZHAIcqwPDpJcCH+cAPu0T5xxWAUvYhwFoYknrRpUm+FnEpELSx6
xDd8lOrJxqZaFCARDwGwvyeu7Gy9fTNXrWjv7070JDCpD4UAHW5N5QWL1+1J
xOKEA6cS6CJRikZqKgB6PXYf3a1FS42EWTADkUjMkt+ZOX7HoWbKaRP66epK
xvkIXuADkCqlv6+HLd0E6gfH2BGVg8jaTqEkCInHJ1pmNzFIte1JVSx04V4p
SXEYf0LiGhoaysrKurq6JOIR+DCH+YCiKx4KB9w5F8+Y9CrAxsI+nAjHEBxJ
ahBP+MjEQIclpS7Vn4pKPnG8zayxGFV+j53wpaQXoe12upx2KaYkHznsVgST
k/CrlubG169eYAR5p4yPfb3dKEOnooP4amppTKVsMW2pI2ZL1UclzACRlNP5
EoBCWxwOsjD5CEkpLX1CBMEroedBTzTODy3wMBL2kdIba95WvynD/LR3eDCW
YiCy2dPXzfbjxwF8Ab2lDAvSUFiEWCIR6IoHbCZlxO/Ej71dUSLaQZNtNVPW
4n2Un/OgmbhbSqOU1kxAtABmI5WhuMdiNiJQXIJcjxpDOSoxrV5HBhdlktcD
WMpgUdzanWInBR+wDJHgUs0aWxiCJfELUokoUaUku6IkCFja1x2z6JV3b14N
ee19yTB4wUhzIWoMp5BrMGJqqeEFI3H98VMfChkIOAa6ow015Y/u5rms+rDP
Jf2WbCjkQtTJcsIN4xCP0ICTkEdMRlRBJ24LuRx84xE3W5BrCm+qC1TUJCqH
SBgUyCMTwI8EhbiJ5PIAEH6mqhScFZc68b7eJGqGwYEW9nvYJwmKOwA+J5qJ
LNmM2v6uSMHtPL2irTcWiIa8sBSA5KPW9ra+vj50HjhYXrRFYVGGkdpCfpfL
bvjQG2mqLr955VxfPBhyW3sTEUYq1kN6nYocJdVInR2tJA4GcSGlDyoKvqRT
BziehWnkBXonnCg6Sp8oEesbG/CjoGs0Bka2oVhcKlalf6QDnAgizvzvf/mj
zaS/nnuJuEtV+1G315GqD506Jf1ZdXNNxaO7N6w6hc9t8zisKf2MhuOx/g8D
GATXU4mJVjESFHyL+Ii+gd5IMuRSttWUlxa6LRqXWfvzQA9tpdNmRJOJaHaI
TZ2602rSBrwOlbyNSCfkKabsFj3fW4wav9uB3eiUcZzUeeEa0LFPpqAopYUn
CG0u2ga/gJkSUimZYhyogsUAQqs00Jt4VvLo3duKD58GcHSiK4pPIxGPz2mO
BOw1lc+P7N/+ruwZmo+cokIA7Pv4QeSgcFC0AKmirre/h8rq46deHN2TDPxp
IGHRtj8tyE/4HTGvIxZ0Oy0Gh1XX2xX2OE0EJkmEfadNr9d0sM8OH70ucyLq
iwRdakUrAYIHdToduBANcIFU6i7hjNGob25tMlscPn84Fu+OxrqkMhjfidKx
K0qfm0iGpYTlcduQlGtXLjqsGuYQDAgxRONIbQMf+2HsiaMH869erH3zwqFX
/TzQ1R2P+FJ3CCkmqakHBhLMPxay/7E/mgxanEZZd9DKaK5+VVbyoK/L77br
LBYNFuOKdENWiz4U9GiUbViMQSrBjw6rgX6Q5CLdmrPaTcLOUX+HSuagdvU5
USSfqLDc5CaHzWm3OsI+JJQKI46k+vxBKekLNUjEiBTOQ4aCh0DjtOwbdcqX
zwq5It8g6b6wH92AeOJ+gs148sgBYup16aOOlrqBniQ1m1vUjT5anJqq18UP
brXUlsub3jn1HXZte+XTh7nnjhzes1nT0fiXn3s8Tgv6B1s8Hpodi0mv+DSQ
9DpMWkUbMpuM+BgOsxbXM+jqWprrsL/LbRO1gd1KaCO/OBFmkmPBSKvV1Fhf
87aSYgZobNEXSimohYxLt9HEnb2IHyWhXGHrdlmJHVlrXWtDTSLV9FA+idvC
QX+q+PLcuZFb9OCWWtZ05IfdbpuJOAp5XRGXo/rVi3MH95cXFcRdppjTGDSr
rPKmoEVz5oeda5cuCDjNH3vj6KdQsGiorzvicehtennIbe6NuKMec1fQYdPK
zKp2p0HZHQv0xINuhxHnpngluun21raerm68RgptbW4BGoalvSKRMX/8Ke64
pjKUcBz1A7oXDcTiQZ/fCRAJI36koMKP/T3R/OtXOmTNnz720bxIdz75FVnD
ZTPfvnml7HnxnbyckoI7bovuLwPd6oZ3J3ZuenH7WkHO2Yc5pxpfFr24m/v6
wfVXBflXTh6UN76NeW1+twlnwUAc3VpXYVQ2/dQV+JT0By3qx/mXOWzL8oX7
t665dv6YrP6tz6oLuK0xcR/F7KLnddkoA+gsSGQkR/wobiX5vRqNiozZLmsm
L4AP6op77GEfjoOc3akikwE6DAU0n9dBniIdd3dFQf246AE8IX2g1SR92EK4
UR9igXv5edcun8k++aPHrPq3nvDr+3mntq1uKL377Pq5B9lHiq6efFOY9+J2
dnnhtXcldwqun33+MK+04MabF4WyxqrskweP7NmQc2Kfsb2mqaLk/KEdK+am
XTy8yypvMLTV1r0qxiCdDVXqtnqDvAXXJ8JeDN7aWqtUtOMFcaPeakDnaW/B
T/F2595t6ZkIvoDJYp5EbSyAsAANgKDAd6IGC3oozOIRP6BIjnx5/14+os03
ZCvMKLXA//aXnxUdLccO7T1/bL+utSZolJXeOFd67fTjy8cbSu88v3Hu2Kal
BdmH6kpu1j+7W/0kH5hNZYUVxTfePr396tH15qqS14XXc0/tb6koPrFr7dXj
e7ZlzdE1Vn0M2mG1WyszdTQ6NTKPWWPVdFi0coOyXSGrLS68adC0MjxOg9uh
93qtVqtWrYKoVpSBCBL3DIIef8BNhkLBEBDhuLDb6RSFj7j/CfCgByxkH/F8
we8e6O8idzwpukcrgYuhPVJDnUnFQpld8bz4yJ7Nj66fe347uwQf3Thfdien
vuROUc6x/BN7Lu5dD+S2VwXVRTeant17V5inqX1Z9/Tu++J8nPv09qXm8seP
r529+MPWvasXrZs/VVtf+fbxnarH95yKFkN7vbmzyWfWJn2OiNce9Vg9JmXl
k/unDu4oun2l4e1zn03tsSit2ra+mHMg4f6p2/M3r5EePF6fw+MlbF0ARLG1
2g6bTcegZQDOh74kOyWlRYQ27RKZUa+Slb8oxQIu8RTLLu6kBXykdY9Vm3fh
GPa/fmJPYc7JwuzjdU/uMkqvnXtw/kjV/byH547k7Nv06ubFxpK78vLiptJ7
tUX57Dc/f/A0PxuMtU/vVxbeKLlxAZgFl09vXTJn96rFR7etK7x+6fq5Y/dy
sx/l5yLXLx89qHn+uKak8Pb54ytmp+1a831l8R2nuulPXa6Qqa3jfXHNszwQ
wUmyjz/gon3Egx6vw53KNWy7umNsITZGQFrx3bMnRZ2tTVIX392bqG+sqawq
iycj8QRVk530HXAaIy5DedGdE3s2Xj68+3HuqYp7uflnfiy8fP5N0b3b505V
FT18fuv65R/3Pjx/vCT3rOzVo+pH1+uK8+WVxY0vHsjfvWwrf2ZqeS+vePbq
Vk757SsFZw6d2bxqycQR2xbN4U8vH9wufXjn8cO7jx7crXj97Fnxw/vXc3LP
HT2wcdXmZfM3L55beiub6H5ddKPq6d36yhJABVAknwPZ7O5BE/0SXWmlQSTJ
Dkm/f6CbHbzTXF/T1lhnNeqePHqYiAT/9Gmgrbmu5NEDhaw+CTZl04XDe14V
5BVeOXVo45JjW5cX5Zx8cuVc6c1LBTnnyh/dL8i93FFV6VHI3z1+UHTlfPmd
a69vXy6/e7WzoqTlVVHlw+sVBdeaXhXoG8oMda/vnf3h6sEt1Q+v1RTknd66
8snVMyU3srMP7ws5Df2JEPUGUUMuoFBymPWyupqW6oqiW9da3r9WtVSTcz1W
Nd0K7gOj02UhALu6o7gSFaWlRZEAqNEqJA7zJR/Z12mVBQ/vOizGWNBHpd0d
9H9Mht6UFOYc29/4orj05sXTO9cVXznx4ub5E5uX3Dqx5+75Q9XF9wqvnn9+
+0bhtZySWzdaKiqU1dU2WYu+oebuueNVhXfqSh9WPrz5tugesfb6Xs7re9nl
97LbXt5/X5ibs2ft44s/Vt6+xAlzDm7fsHD64vSJN7JPRNymeBi9NKHeVNca
skKnPOh1dcdQPgfCj+5ZzHq5Uob7RPUbF0U3LOUjWCRCAsdk1on7DX8LUhWl
r93CyfQG9R8/9n/qif2lr6vmZfHFg7sfXDr5NO/8g/M/Fl06ev/s3qan+XdO
7zixdenre5evHfvh1L6tj/IuP7l149rpUyX5tyyt7e2V5bKK8rbXz+6ePfH6
zo2K+7eKr+eU3b9ZWZB7//yB2sfXVVXF8teP7p/af//kgcKzP+5dPn/sZ7+c
PfrreZNHEYZ/6o3AF7fNEI1HpBt0VNq0xvTFDfW1NdXv1FoV+DuUCjhptuiE
tqSICkbqH9ARfdIDQQYlDVwVT2ECbm/I548EnjwvhsaxsCfmd147c+TwljW5
x/Y9u5n95CqScuT1nXNtr++9un264v6l90/uvLxz/V726fKH95/evp174uTj
3Lz6p8/fPip8duN6cc6FRxfPVjzIrystrH9R/CD7dPaBrbdP7a8tvoXqll49
e2LjqtXpk+aNGjZrxNC0IYMnfPHZlK+/OLln+4MrF506hceqJ5ENfOiBaTar
kV4barU21lGhSSg0OjUpz2ozULS43ORBJ6602ozwE3+BiFIZ9xGDBCC8FXeA
vc5IV8Lpc7189ZS0/m8/9+eeP3Zk54aDW1buWbVw54qM8/vWX9y39s6ZvbmH
t5AU7mefeJKX01r2rKqwoCg3t7q45PaZc8WXrrzOzy/JuXRl/64HZ44/vXbR
1lzdUvbkyfWL6OfdC0ee51/W1r75YW3W7/7rfx75m19ljBw+Z9TIcZ8Nmj9u
7KzvRkwa8nnmlAltVa88RjW9jNGopBqn17Do1e1NdfRWVDgOu1mjljNnXAZG
WhgiEYyhsFd6uNzblwQduPAgWwY2EQ8OImFaY3Hf3ut+/qw4GnCp2utvXzm7
f/PyA+uXrVs4bcfSOVkzRh9YteDAivkXdm14fPVczg97ii5feJJ7tTTv2uH1
G89u23n3xMm8gz9c3L45d+/2y7s2FeecYBCtL27lVD+9V15w89a5YzD26rEf
vvnVP4/7/A/Tvv1m4YTxU4Z8Nf7zQfPGjRrz2a+nDfvi9rkj+tYaOhSHQ2cx
quprKn1Oq7qzra76DU0BPtXpVVRZ0BLHsXU4zW6PjR3pfjJD4ueHj72wEYoK
lopGPxKPJihr3Xab02p6UVJEi3T3WnbJ/bzcU4eObFu5f3XmwTXfn9608sre
LfmH9xWeP1Fw/vT9MyduHj16fufODbPnnt26Le/A/p0L5u7NnHty7bIfs+bn
Hdx68/COSwfW710178yBzVdOHTi2a+PedcsLci8O/l//+NUv/2ncV3+YOfLb
8V989uU//bfRg3416ct/HfqLf1idMaHz3UuHRUlBgvsov60GjUlLXapyOa2g
kHW0iDUwqRvjNruJZOdPPeVkUMxQn6R6JZfod7oSlNO0+V3iPrmJKgiJhhVt
ze/LXj6pri6nq6er/fnDwJWLZ1cvXrB3fda2pRm7s2bk/LCBiuv8gZ1lD2/l
Hv5x39Jltw4evbn/YPGp00eXLb2wYd2ZjSv3fJ/xKPvI1UNbT+5alTlleFb6
mEWTR5zYtvr+heMZo77+7X/5TxO++D2+mzV21Ngvvhj6r78cO/j3U7/9YuIX
v96cOT3/9P6wXa1urdZ01Pvs9IxKZMEfcKAnKd85OzraccnAQB8MFO1tqncg
stgBLPGLKZg5UowR+vv7aZy7klHCWaeWNdZVtbfU/vShq683Qe6oKH9p1us6
WhqfFz48+8OOrUtmH1y/MPuHTef3b963etnNU0eOb1y/fdGiq3v2FZ09vy8z
c9+iBafXrTy4bMGdo3vO7Vy9PXP67mUZW1IM37wo/ezOdXuzFn7+3//+m3/6
xxG/+WXa10MnDBky4veDpg4f/t3vfoMr077+w/IZEx5dPRt3GbWyeqOqjVHz
rqyl8T0kJNyAQyshKu2Am4hDM8EoUZFs2Nef7Ovv+vRTP2UMqYEGRFoJQHPU
052Ud8rKXj+zWQ0f+uI0fdikuytBS1j+8tX+nTt3rFt7eMemA+uXH9609Pjm
rOc3Lh7ftObQmqwj61btyly0bOKEgyuWH9+w5vjalbn7d5zftnrT7Elb5kxZ
N2PcxR1rt8+ftn/pnHNbV2Xv3HDzx927M+dkfDtkzG9+OXbQ70d/9tm4wV/g
xPTvvps+fOikrz5bPGXsuf3bdR0NAY85GnJrVe2tLfV6nZLUptUpiSaZrC0c
Tt3y8jppNr0eB3+SlrIgm3RM4vZXWFiAPggIyYRYBNTQUFdT8z4eC1GqdcUD
fd2x/r6kdCP91LHjm9evW7Zg3vY1K07u2Xpgw5KLBzbl/bjrSfbpY+tXnN6y
ftOcmfuzFi+ZOHZDRvqu7+dumZe+Y8H0DTMn/LhiwZaMybvmpx9ZtnDD1NGX
t64+u3YJ24PfZ6yY8N2mmWlpnw+aMOh3aYjM4D+M/WzQ6N/9amV62pqZkw+s
zWqte+v32G2puxm9PYlQ0Fv8pLC1rdGVWj/GrCitGSR9aIZOihtifxtdPXFh
gUiIH1IRJRORN5XlLS1NkUiEovSnT/0EKWRONRe99XU1G9eu27px0+ZVq5fM
mZ1z/NCLBzcu7Nt6ZN3iPYtm786cvXT8d8unjF+RNiFz/AjGxjlp2xamH1wx
7/DKBYeWz9+XOWvXnOln1y69tWfz7T0b83etP7F0zqIhv988bdyJlZnb5swY
86+/GPXrX4z49T9njBy2aNx3y6dO2JAx5dCGlc01FSiG0aAReTAeIvdVVJS1
t7fW19dK94q9LqtPLGogcZjgKpopLb2j/aFIEA1+NEwJiqNbGmqdDltvb7d4
1N6XjEWDqbtbHuTop08f2ttadu3YuW3T5p2bNy+dPyf7+KHnD25syky/tH/T
zoUzVqWNWjhyyJJxI/YunrdrccaBFQtPbczau3j2sTWZADy8fMHGGRN/zFp4
YFHGzvRJVzevurwx68DctDUThl/dsf7EmsWbZk+dP3Lo7OFDRg/69falC68e
3jPli99OH/rbfWsWyxqrUUK0gkaVUDKZDFJ7W1dXA0z45nFaqN5ofxKph3Ei
GBNR6ZkaVRmy2dfXg9/v3L5hM+k/DPSJJxQ9SahLl5RMBuMRL33xh4EeyqQj
Px7evX0HAE8c3P/0wa1LJw+e2bv57J51e5bNXj5pxPr08eSOE+uz8Nfe72dt
njlh3dTRbA8snr1tbhpe3jxrysIRXy8fN/KHxQvWT524e/7so6uW7lgwa8mE
0dO/+TJz8tjP/vEfRg4eNGfiuHmTRk8fMWT9wvTD29fVvi3Dg9gftTfotWaT
AS/Qn9psNq1Wq8e1yrZkzN/bE4+kijHqFqCFo6F4MiZGPIpB7t3NhwA/f+gj
BvFpslsEKeVBMumPx70ul0nC+O7tm/27d505fuRW3pULxw/u2rB85+rMVbPH
7Vicnjn+a5y4bd70lZNG7V00c1vGlB0ZkxlbZk0E45KxQ/d9Pydr4nfb583e
PHfWxtmzVqRNXDJhTNaUCaN++0sy+7Df/nrn6hU71q6eMuq7YX8YNHrI5+nj
R29dkfkgL8eok6coqva4bU6HRSFvv3H9GrUopanJZGpubSHE0EZp2Qb7OBed
kZpBkiMOVShlVotBJIuwn4wQDjg/9ificWyS6OkTayzJMgJ4PFzy6GFna73D
qH54M3fzqmWLZqfPmjh++sjhFCFLZ05fOXf2/CmTMyaM/z59ytKZU7dkLVg4
efTe1d8vmTY2a8akA2uXZ82csnLW1N1L58/4ZtCStDEThww6vnvTtFHDxnw9
+Ovf/Xpj1tKVC+dP/GboOKRm2NBlczPO/HiwvqoiGvQhkighdQtbUkP+rTzK
SMSfzG4wakAnrWwUt0w9LqISl6EtlKNoDkPcyiDXJ6NCNpMRUgPi+dPPvUJj
qXM+DUBjRKaluY7u6X//caCpuvLwvh17tq5fkblg5sTx00Z+t2TGjNkTJ04Y
Nmz6uPFpo8cMHfT7bwb9buzQL9PHjhg/ZPDBzet2rV4x5Fe/4Mgp3w4tvHRu
2C//55SvB3/5L//j5L4dB7ZuHDlk8Nhvvh4++LOvf/ebMUOGjP/mm3nTpmbO
mpl96rjHbnbbLQQg9bOoW1IAKypftbQ2UIUC0GjU01MQcXASZqbWIjr/4w5b
Y1Ot2aKHtFK9Terky0jEEwp6evoT/qAnkoyGExEYa7GY6uvexYLennjw7LGD
tZVl929c27tj6/z06SO/GjJ/6vSZk9ImjRwzYdS4YV8O/eqzwV/+dtDk0SMn
DP82bdR3MyeMW79s6civvhz0L7/Mmj8v+/DBrPSpY74cPPqLP8yePHHG+LFj
hg2dOHLE8M8HTxwxnJ8smZOxcFb6+uXLqt+Uu6ym6veVVCYms5aWQa5oh2/M
U62RS8/giERpSY+08hOM4m6j2YgHwV5W9gquMsiJYCRCU32TF6UN0yHGI/Hu
Ll8oSO3+7l2VViPHSIr2xrzL5//v//mz22bKPnd6QcbMjKlTvp+dMXnU6LQx
4yePmzRk8FeTxkyYPHZi2pixY78ZljZ61PQxY8YN+4aZTxo5atrYcROHD5s1
bqz4+N2IEV99MezzPwBw5NdfTU0dP3HEd+xkTJ/+5tUrUnNba3N52fOAuMWN
Ew14pKNTrKhUKuUKhQK1dzgciS7xwCgYDhBNAJQWjuKUV69e6PVa8XQvHu3v
7xWrYhLi2aW0fMXpdiBB3mBg4OOHTkWHxWz8+af+7ljoWfFDm175l58GNPL2
5UsyC+7e2rVh3daVKzH73KnTFsyeM2b4d+OHj5w3febMiROmjR2zKH36/i2b
po0ZNWfKpKljRjNmTpw0bti308aNH/PNMMwy7tvhaWNHTxkzatakiRlTJo//
dti08WOfFD6wmw1GkxaCdciaX74osdlp8UzEnbgFkVp143K5xDInsU7F2amQ
p1YTh5m2tOCnpa25rqEWyKAjSPEmEiTqtJ6u7u4kP5ce2Yt1UBZLfUN12O8h
dZS/ePL88b3+RIhG++njgtWrsmjQrp47uXbR/C2rViyaOSt94qSpYyeM+/a7
+dNmLkyfMXfKlAVpU07u3bNt9coJ335DWOHBjLSpC9Jnz5k6Y+HMjOnjJ4AU
O0wbPRpTTBn+7YxxY25dvmTVqsjdVGVt7Y2y9qY3la865a14EMh4kDoNAdFo
VNSWjx8/lhYbJLu7xNO+1Oo7cDW3NqWebPtd4tGok6JOWhYCOv6Fw+Gevl6x
pDMQaGpopLUc6E5oFW0bVi5pfPv6z/1d5Kas7xecOHLIbtJXlz2fPy1twczp
U8eOG/r5l+NHjp0Nuplzv8+YtzpzKRhXzJ9//eIFHDpn6jQG0Tp/xiygzZw0
GequWrhw/rTJS2ZOz5w2afuKJS8L7oQdJlnjO7tFTRehULaqlDK1qhO1hFed
8jbEnx0wMpAaMEqP7F0et9vrkdZu+YPEl1hNhyul1en0uaQPAKaWqEXBKFbj
haOdnZ3NjU2UNJ/6ut9VvJiXPmVB+uQD2zddOX/yyL499dVvE6FQW2Pt2mVL
Fs2dnTl3/tjR477+ati8WQtWLFm1YdW6JXMXAef7WXMP79mfOXvuzLRpc2bM
XLFo8erFy5bM4W+zVmcuXP995pqF8+ZNGr8sffL+dcuf5F/t8dudBrla3uB1
691uo8/rIJkDivqzpvYtYki+gFToDOpBpiO4SBPMXDwkSnW4xBqBRj/Fr9AW
RElag80x4vmpPxCOdyGsoXC04k0lMkV/0ZOId7Y1XzxzMu/yxZqq8mePHr4s
fhRy2XsT0dbGunWrVq5evmL1suVjh42YNm5i1oLM2VNEPIIoY3r6woy5y+Yv
mDJq9Phvh2dOnZazb1fegb13Thy5fujgtSOHcn7YtzMr8/CmNUe2rFowccTW
5XO1zW9CDk3YbYgFLLLWGlQU8SQp1NW/Z84MiaKABXLV2/LUaj2ftOyf8BTL
yJ0WDiCnEMKEG3EHdo4RT+dDIZfPm+jp9fmDao2uqqoylFpdRh1+4ujBxrp3
//7nn3oT1KeOP3/qp8V0WY0tzfUnj/64ctnSNVlZc6dNXzxn7oHtO65duHjh
zNlL5y/s2rY9I33m3PRZyxd+j6RkpqdvXrF407IFG5Yt2r1h1ZHd2589vGvs
bLEp2zcsmbsgbUzdqyJ145u8C8eeF+Yr22p0qlalol2p6mDCTJsJ4zJpDbbe
oOYjfkRtYjFRUaOu8BA9wbPS/V7RFHvdAJQe0NDwisWeyW6bnVzpq6urg9Q0
SqBrbWm4k38tKVY92anA6c5cdkPI71B2NkOheMR/7vSx3Evnb16+pJG1Uf7Y
jDqrxWSzmjkzTfeObds3r99QcO/+vVv5ly+fzbt+qfRpYW3dW7mi7U9//FBb
W7l88fzcnJNXzh6pe/M06ja+Kr537uiB5vo3fhflmZkY1KjldHyke4Yk9aBD
cxg6g95kMSMsRrN4B4FM0TfQa7IYLTaz9NoLZQA6QyQSquIhvtfr94vl3JTr
YrWg3UwpuH/fzsIH+d2JYCDgiMV8DodBo5EZjEqny2Q2qzs6GinwQJ199mQ0
4HHRtoS8TEDMx27humfPnk1LS6t5X6volA+QZGN+X9gbSYatLlvps5LMxQtW
rVymU8twi6q93qrr1Cnb1Z0tLphG8ZRa7kgJajJqadyYD8ka+uEd2ltciXhK
K39el5fpjTqyG9rC0Bm0vf099E2p9ynC0iIosklKYSLSciPxeKIrRh+9ds3y
1CPRXrtdr9N1qtQdkai/hbrUaQYjX+r18tr35ft3bbEaVHaL1mHVJZJirbvJ
Il6VamlrnTt37vnzFzUqtdtuC/ncVIy1tdVnzpy5f/9+XW21XqdpbqhWdrbS
F4hH9g54aDWYtCQ+AlDyoLyzjZKSghmkkuygqEhKSDxuJzXExRrs1NsH0tJK
Bh8pb1LDa7VTAJAy3HQT79+/LS19QrVj0KupAynjxZoEipygqOIsZl1Pb1yn
V4qTp9hCUKhVHSajRtbaIB7Dxf1ANtv0dpf5w6c+2ELXdvTo0a2bt6nlir98
+mTVaK9eyt67c9ebikryMFHgdjkI8PaWekLAYlSJW7hUyImQwWok1mgi4CcY
cSUe7JC1sE+DIJbp2k3SuiYgkBrQfuntHqnh/f+XWUoeZGuxWUufPZWKH+SX
yMVu0h0Pu80EXroMdsQCS0pheGi3cDZxt1+nIV4sRk1qsYEHLzc11wZT6wEg
/ONHRXNnzS4pevykuOjI4UOPHhUQ7zqd4dOnn/EEbKt7XyVraXTaYLSanC4K
abMOI9PvQCSwNDXW6rRKJgNMNAHq8iUukJagt8na8RE7zJ+4o86EpRQ2Ei3J
6ThatP0Wc8XbqteVFXwjVvGl1pBzfk5bW/O2ob66uamOzlFaagWHdTodvxLr
xqxCwf5mWJ1NrCqHYB34lyFW6/m8+XnXTx49diH77NNXzz7++adQIhaIxaqq
a/iB0WikbYe6LfXVKLPXZaV2Empvt3JCyYOAwrzYVq9TiTVvFgN9OjvStGWd
HdI6VfbxtJiV2RSORsj7DICjRSqNmt8/e1YqLTyT1nohs6nFVGEKV1IMsSOK
h9QLOyKDeMWqe9wnrVSnwpfebOKvcnmHMI7HhW5zfFtbi7SEAM7U1tfgdLiE
mlVVVbW3t1MQUljiU6vVKhacp9bLIYnISNDn9NiNGnlra8N7m1mDFtW8K/M4
TUadsuTxw5rqNzhCWqoNRZm/tFpbqVYZTGJ9KUNatt0h7wRgdW0N8dLX1yMl
DumFR2nludQ4S6uvA6ll9gyASOufwQi09vZWjpSWDkpNKL8CIMU/J+Gv4u0S
FEavgUXiLQCJIeLtLbG+R3o3ii/bZK3SS2RkQEo1CZSio8lq0sJhm1mHULP/
7s3rqjev/wMgTpXeCglIq9DcSNxf36RA5SyCVcb7Dx9wfrVamVqA7aax4tJU
qkyPqzNtyaF8lO6jMqQv+QgK+i/xfkSqauJ4nMgZcLpC0UkdiK/ZsdpNClWH
xWYUK5fcNlRCrL9NRqQ7DKQAvCZXypTqTr1RQx6nfYCcQjYDHnQMMaf1Zken
VYgaoFPMHE6iHjhLbzTgO8lr0hsifA9782/f4k81dbW19XV4hGkzZ0za0tKE
zQ0GHYjwhfQlBY9Ygel1S6/CqVSKxsZ6EAEEH+FKdFhaW4uVpHcQpNcEOAmQ
kQ4bvYBWQW9OE+T22MT6EBtxbbGK7tsfjZHGnGQHGY0DcaNRYSXikZxOYlWK
xRU2IpEuuLOjpan+PZ4i1kgT8JMhLSgl6MSLaalXeKQV8uSIouLHoGZKUvQx
f/bFPRyvm6sASnrxjZmDEWhCYMPiDTJqFVyDE/kr7v7ru58pX0u9GwDxr7Q8
Ff3XGdQ0AgbhoE6x6iPiKS6+39j4TqFoMVt0VW/LEGcRfWFytBWRR/zBWFFR
hn2YCT+0Chy6utp3tFSS8qOWQGhqaSbQJNlhi7Tiaent0cqqN+9rqumSsIb0
RjDxyI70Jp1aq4HYZEmJ1dLqbk6L3/EsENAQcCEyOJH2XzIFf3IIpdVAA4nz
cIOPHC+9spdMhBXytvb2eq22w2LROJ1GiFdf905a8COFMK4n9svLX8MTbM6F
AEgBQH4sKS16+64CfzGT1Ps74m0RfCStWsdxhB4A+Z7R3iGT3lWpa6iXgpTD
+AZ1RYIamhrZghebNLe2SG/ucGaqI0lXxQt9qfvMzKG6+h3OldzHDgzne/EC
QuqtGRqWVDUoXmbp7YnDNKNR6XabgelyCeKRcAm9lOB0GQwGyIy/4LNUmMFV
2EIVBNK3b99AGNp5bC7eylYpsT/MFDz0eqT1+WINeepNMelFEvgMavFKTioz
dvf24CN+0tXTLSkVGIXXYlEoIV4EM5vEC9EGnaSHbDE4kxerqlKxjFsJT/zI
fKTMIr1JTRTwJzoRDPbq1ZP378s8HguCSfNOmsNl0F6pVJr4Z9S2tTZKHQ1h
2NAodJ6rqEmzWpVc2Sm91GMw6cnF0ss7UIUB9tbWZszIdVFyjMzgopTlUuNP
JeH1hVxuv0arFwv3fe7U7Q7385elCHggJF48ESLvQBd12E96dU4qa8X7j+JW
mA7KyTtboRx1qXjwbNaZrSrKV+o3zllV9a7h7Ztup9atbqI96VTL1To5EWp2
mJg8ymnSqXOvXnr3toLq+sXLUmIQ3cNTJDXMzgTqGxukjANGoEk72FN6b47j
AUXYogCIIR9FNrf8VXzeva9pa5f7AxFH6s0ESiiyczQeam1vkl5SEy+BBoM6
dSclG9TiU6orcUo1rShQNXIchJvgGMKIkWGa0aSh1ITqHZ0K5tDRVNNZ9cSj
rjdo2qmudUZF+ZuXdQ3VzASLqeWdoOMkiGdF5SvICRNEhlApYSYwAYjjmJtK
o2RIbpVeGJeigCHe89KoUq+n6wBO/SalSzxod3icLh96bRXWEQukmUM4GsBQ
JBfxpmE4XF9TRXFFRU/NzMm5tPRuqVjS4BGvPYoKNtWiCv7YLDdu5uq0auhN
6SLqOk2roqrA3Po85NHJOuu1eplOL3d7HYiVXq0ya7XUn3QThBu+I8nyPZ+x
D7LQ2t7W2Nz0/wB+9awk
"], {{0, 75.}, {75., 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{75., 75.},
PlotRange->{{0, 75.}, {0, 75.}}]\)]
Out[19]=

Get the observation link in order to annotate the "LifeStage" of the specimen and hence contribute to a research-grade observation:

In[20]:=
Normal[ResourceFunction["INaturalistSearch"][ "Halyomorpha halys", "SimplifiedDataset", "QualityGrade" -> "NeedsID"  , "Page" -> 1, MaxItems -> 1][All, "ObservationURL"]] // Quiet
Out[20]=

Resource History

Related Resources

License Information