Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute polygons for hyperbolic tilings
ResourceFunction["HyperbolicTiling"][p,q,n] gives a list of polygons representing the hyperbolic tiling of p,q, and n. |
| "Primal" | polygons are positioned around a center coordinate (default) |
| "Dual" | the corresponding dual polygons for the hyperbolic tiling |
Generate two layers of hyperbolic tiles, where each polygon has four sides and five polygons meet at each vertex:
| In[1]:= |
| Out[1]= |
Visualize the result:
| In[2]:= |
| Out[2]= | ![]() |
Generate three layers of seven-sided polygons where three polygons meet at each vertex:
| In[3]:= |
| Out[3]= | ![]() |
A slightly more complex tiling:
| In[4]:= |
| Out[4]= | ![]() |
Compare the "Primal" and "Dual" methods:
| In[5]:= |
| Out[5]= |
| In[6]:= |
| Out[6]= |
| In[7]:= | ![]() |
| Out[7]= | ![]() |
| In[8]:= |
| Out[8]= |
Get the tiles:
| In[9]:= |
| Out[9]= |
Get the individual polygons:
| In[10]:= |
Animate the incremental drawing of the polygons:
| In[11]:= | ![]() |
| Out[11]= | ![]() |
Use the HyperbolicPoincarePolygon resource function to convert the polygons to Poincaré polygons:
| In[12]:= |
| In[13]:= |
| In[14]:= |
| Out[14]= | ![]() |
Wolfram Language 14.0 (January 2024) or above
This work is licensed under a Creative Commons Attribution 4.0 International License