Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Heuman lambda function
ResourceFunction["HeumanLambda"][ϕ,m] gives the Heuman lambda function . |
Evaluate numerically:
In[1]:= |
|
Out[1]= |
|
Plot over a subset of the reals:
In[2]:= |
|
Out[2]= |
|
Series expansion about the origin:
In[3]:= |
|
Out[3]= |
|
Evaluate for complex arguments and parameters:
In[4]:= |
|
Out[4]= |
|
Evaluate to high precision:
In[5]:= |
|
Out[5]= |
|
The precision of the output tracks the precision of the input:
In[6]:= |
|
Out[6]= |
|
Simple exact values are generated automatically:
In[7]:= |
|
Out[7]= |
|
In[8]:= |
|
Out[8]= |
|
HeumanLambda threads elementwise over lists:
In[9]:= |
|
Out[9]= |
|
Parity transformation and quasiperiodicity relations are automatically applied:
In[10]:= |
|
Out[10]= |
|
In[11]:= |
|
Out[11]= |
|
Apsidal angle of a gyroscopic pendulum, plotted as a function of the initial angle θ and the coefficient of stability μ:
In[12]:= |
|
Out[12]= |
|
Visualize the solid angle subtended by a circular disk:
In[13]:= |
|
Out[13]= |
|
Evaluate the solid angle:
In[14]:= |
|
Out[14]= |
|
Compare with the result of NIntegrate:
In[15]:= |
|
Out[15]= |
|
Visualize the gravitational attraction of a point to a semi-infinite right circular cylinder:
In[16]:= |
|
Out[16]= |
|
Evaluate the vertical component of gravitational attraction, assuming the cylinder has the density of iron:
In[17]:= |
|
Out[17]= |
|
Compare with the result of NIntegrate:
In[18]:= |
|
Out[18]= |
|
HeumanLambda can be expressed in terms of Legendre-Jacobi elliptic integrals:
In[19]:= |
|
Out[19]= |
|
In[20]:= |
|
Out[20]= |
|
Certain cases of EllipticPi can be expressed in terms of EllipticK and HeumanLambda:
In[21]:= |
|
Out[21]= |
|
In[22]:= |
|
Out[22]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License