Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Convert integer tuples into Heegner field primes when applicable
ResourceFunction["HeegnerPrime"][{a,b},h] converts tuple {a,b} into a prime number for field |
Show the Heegner primes generated by tuple {1,2}:
In[1]:= |
![]() |
Out[1]= |
![]() |
Tuples with a common divisor do not have corresponding Heegner primes:
In[2]:= |
![]() |
Out[2]= |
![]() |
Applying HeegnerPrime to these tuples gives Null:
In[3]:= |
![]() |
Out[3]= |
![]() |
Generate some Eisenstein primes from the field :
In[4]:= |
![]() |
Out[5]= |
![]() |
Show these in the complex plane:
In[6]:= |
![]() |
Out[6]= |
![]() |
The tuple {19,30} generates all Heegner primes, except the corresponding Gaussian prime:
In[7]:= |
![]() |
Out[7]= |
![]() |
Generate some Gaussian primes from the field :
In[8]:= |
![]() |
Out[9]= |
![]() |
Show these in the complex plane:
In[10]:= |
![]() |
Out[10]= |
![]() |
Show some Kleinian primes from the field :
In[11]:= |
![]() |
Out[11]= |
![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License