Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Test if a number is a harshad number
Test if 2023 is a harshad number:
In[1]:= | ![]() |
Out[1]= | ![]() |
Test another number:
In[2]:= | ![]() |
Out[2]= | ![]() |
Test a list of numbers:
In[3]:= | ![]() |
Out[3]= | ![]() |
Give the base explicitly:
In[4]:= | ![]() |
Out[4]= | ![]() |
Use a different base:
In[5]:= | ![]() |
Out[5]= | ![]() |
Base 0 cannot be computed:
In[6]:= | ![]() |
Out[6]= | ![]() |
Base 1 cannot be computed:
In[7]:= | ![]() |
Out[7]= | ![]() |
The number 0 cannot be divided by itself:
In[8]:= | ![]() |
Out[8]= | ![]() |
12 is a harshad number in multiple bases:
In[9]:= | ![]() |
Out[9]= | ![]() |
12 is not an 8-harshad number:
In[10]:= | ![]() |
Out[10]= | ![]() |
The number 2016502858579884466176 is a multiple harshad number:
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
Find the first 1000 harshad numbers and visualize them:
In[13]:= | ![]() |
Out[14]= | ![]() |
All numbers up to 10000 are either a harshad number or the sum of two harshad numbers:
In[15]:= | ![]() |
Out[17]= | ![]() |
The first factorial that is not a harshad number is 432:
In[18]:= | ![]() |
Out[18]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License