Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
List the isolates in a graph
ResourceFunction["GraphIsolates"][g] finds the isolates in the graph g. |
Find the isolates in a graph:
In[1]:= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
Show the isolates:
In[3]:= | ![]() |
Out[3]= | ![]() |
Find the isolates in a graph:
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
Show the isolates:
In[6]:= | ![]() |
Out[6]= | ![]() |
Works with undirected graphs:
In[7]:= | ![]() |
Out[7]= | ![]() |
Directed graphs:
In[8]:= | ![]() |
Out[8]= | ![]() |
Weighted graphs:
In[9]:= | ![]() |
Out[9]= | ![]() |
Multigraphs:
In[10]:= | ![]() |
Out[10]= | ![]() |
Mixed graphs:
In[11]:= | ![]() |
Out[11]= | ![]() |
Count the number of Isolates:
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
Identify if a graph is free of Isolates:
In[14]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
Delete all isolates in a graph:
In[16]:= | ![]() |
In[17]:= | ![]() |
Out[17]= | ![]() |
In[18]:= | ![]() |
Out[18]= | ![]() |
If there are no isolates on the graph it returns a empty list:
In[19]:= | ![]() |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License