Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the generic invariant of a group
ResourceFunction["GenericInvariant"][gr] computes the generic invariant of a group gr of the same order as the group order. | |
ResourceFunction["GenericInvariant"][gr,n] computes the generic invariant of a group gr of order n, greater than or equal to the group order. |
Generic invariant of a permutation group:
| In[1]:= |
| In[2]:= |
| Out[2]= |
An equivalent specification:
| In[3]:= |
| Out[3]= |
Using literals:
| In[4]:= |
| Out[4]= |
| In[5]:= |
| Out[5]= |
Generic invariant of a symmetric group:
| In[6]:= |
| Out[6]= |
The generic invariant can grow in size very quickly:
| In[7]:= | ![]() |
| Out[7]= | ![]() |
Get the generic invariant of a polynomial using Stauduhar's method:
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= |
This work is licensed under a Creative Commons Attribution 4.0 International License