Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Galois group for a polynomial
| ResourceFunction["GaloisGroupProperties"][poly,var] returns the Galois group for a univariate polynomial poly in the variable var. | |
| ResourceFunction["GaloisGroupProperties"][poly,var,prop] returns the specified property prop. | 
Compute the Galois group of the polynomial x2+1:
| In[1]:= | ![ResourceFunction["GaloisGroupProperties"][x^2 + 1, x]](https://www.wolframcloud.com/obj/resourcesystem/images/053/053539e0-3d79-4077-bfa0-57086b95d370/152eabda871c0e3e.png)  | 
| Out[1]= |   | 
Compute the Galois group of the polynomial x4+2:
| In[2]:= | ![ResourceFunction["GaloisGroupProperties"][x^4 + 2, x]](https://www.wolframcloud.com/obj/resourcesystem/images/053/053539e0-3d79-4077-bfa0-57086b95d370/20bd9b32d8ea98b3.png)  | 
| Out[2]= |   | 
Return the CayleyGraph for the Galois group:
| In[3]:= | ![ResourceFunction["GaloisGroupProperties"][x^4 + 2, x, "CayleyGraph"]](https://www.wolframcloud.com/obj/resourcesystem/images/053/053539e0-3d79-4077-bfa0-57086b95d370/0a8c9b28dd0f12a2.png)  | 
| In[4]:= | ![(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/f858d0b7-0bd9-4045-bc75-f9023638a388"]](https://www.wolframcloud.com/obj/resourcesystem/images/053/053539e0-3d79-4077-bfa0-57086b95d370/57e8ef648824604b.png)  | 
Find the group order:
| In[5]:= | ![ResourceFunction["GaloisGroupProperties"][x^4 + 2, x, "GroupOrder"]](https://www.wolframcloud.com/obj/resourcesystem/images/053/053539e0-3d79-4077-bfa0-57086b95d370/433316b4b2871434.png)  | 
| Out[5]= |   | 
Get the generators:
| In[6]:= | ![ResourceFunction["GaloisGroupProperties"][x^4 + 2, x, "Generators"]](https://www.wolframcloud.com/obj/resourcesystem/images/053/053539e0-3d79-4077-bfa0-57086b95d370/4a028e06e5c03307.png)  | 
| Out[6]= |   | 
Find the group elements:
| In[7]:= | ![ResourceFunction["GaloisGroupProperties"][x^4 + 2, x, "GroupElements"]](https://www.wolframcloud.com/obj/resourcesystem/images/053/053539e0-3d79-4077-bfa0-57086b95d370/1bddfdb204953685.png)  | 
| Out[7]= |   | 
Display the group multiplication table:
| In[8]:= | ![ResourceFunction["GaloisGroupProperties"][
 x^4 + 2, x, "MultiplicationTable"]](https://www.wolframcloud.com/obj/resourcesystem/images/053/053539e0-3d79-4077-bfa0-57086b95d370/146d2acaa0797db6.png)  | 
| Out[9]= |   | 
Get all of the available properties as an Association:
| In[10]:= | ![ResourceFunction["GaloisGroupProperties"][x^4 + 2, x, All]](https://www.wolframcloud.com/obj/resourcesystem/images/053/053539e0-3d79-4077-bfa0-57086b95d370/0ff63f1270b6efb6.png)  | 
| Out[10]= |   | 
An irreducible polynomial of prime degree p larger than 4 with exactly 2 nonreal roots has Galois group SymmetricGroup[p]:
| In[11]:= | ![IrreduciblePolynomialQ[x^5 - 5 x + 2]](https://www.wolframcloud.com/obj/resourcesystem/images/053/053539e0-3d79-4077-bfa0-57086b95d370/032a85f69ad505b0.png)  | 
| Out[11]= |   | 
Verify that there are 3 real roots:
| In[12]:= | ![Solve[x^5 - 5 x + 2 == 0, x, Reals]](https://www.wolframcloud.com/obj/resourcesystem/images/053/053539e0-3d79-4077-bfa0-57086b95d370/0b5afb1263defff3.png)  | 
| Out[12]= |   | 
The Galois group for the irreducible polynomial of prime degree 5 with 2 nonreal roots is:
| In[13]:= | ![ResourceFunction["GaloisGroupProperties"][x^5 - 5 x + 2, x]](https://www.wolframcloud.com/obj/resourcesystem/images/053/053539e0-3d79-4077-bfa0-57086b95d370/5eac4d5442782a5f.png)  | 
| Out[13]= |   | 
This work is licensed under a Creative Commons Attribution 4.0 International License