Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Count the number of ways to partition a set where the order of the subsets matters
ResourceFunction["FubiniNumber"][n] counts the number of ways to partition a set of length n into subsets, where the order of the subsets matters. |
The simplest non-trivial Fubini number:
In[1]:= | ![]() |
Out[1]= | ![]() |
Here are the first 10 Fubini numbers:
In[2]:= | ![]() |
Out[2]= | ![]() |
This shows the 13 ordered set partitions of the the set {1,2,3}:
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
Use FubiniNumber to get the same result:
In[5]:= | ![]() |
Out[5]= | ![]() |
The Fubini numbers are periodic mod 10:
In[6]:= | ![]() |
Out[6]= | ![]() |
There are many other modular relations:
In[7]:= | ![]() |
Out[7]= | ![]() |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License