Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the fractional derivative of an expression
| ResourceFunction["FractionalOrderD"][f,{x,α}] gives the α-order fractional integro-derivative of f with respect to x. | 

Compute a fractional derivative of a power function:
| In[1]:= | ![ResourceFunction["FractionalOrderD"][x^2, {x, 3/2}]](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/5f33efec6cf50b57.png) | 
| Out[1]= |  | 
The first-order fractional derivative is equivalent to differentiation:
| In[2]:= | ![ResourceFunction["FractionalOrderD"][x^2, {x, 1}]](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/62815699276c59b9.png) | 
| Out[2]= |  | 
| In[3]:= | ![D[x^2, x]](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/048f7f820cabf75c.png) | 
| Out[3]= |  | 
The negative-first-order fractional derivative is equivalent to indefinite integration:
| In[4]:= | ![ResourceFunction["FractionalOrderD"][x^2, {x, -1}]](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/770a07ca7b0acaa4.png) | 
| Out[4]= |  | 
| In[5]:= | ![Integrate[x^2, x]](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/4ea1646632d4fa76.png) | 
| Out[5]= |  | 
Compute the fractional derivative of symbolic order α of an exponential function:
| In[6]:= | ![ResourceFunction["FractionalOrderD"][E^x, {x, \[Alpha]}]](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/5916905ebc2599af.png) | 
| Out[6]= |  | 
Compute the fractional derivative of symbolic order α of a logarithmic function:
| In[7]:= | ![ResourceFunction["FractionalOrderD"][Log[x], {x, \[Alpha]}]](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/54da398b0236ed3e.png) | 
| Out[7]= |  | 
FractionalOrderD works for both numeric and symbolic orders:
| In[8]:= | ![ResourceFunction["FractionalOrderD"][x^n, {x, \[Alpha]}]](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/260bb540902209ed.png) | 
| Out[8]= |  | 
| In[9]:= | ![ResourceFunction["FractionalOrderD"][x^n, {x, 7/3}]](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/34fa3ac905fb8c4c.png) | 
| Out[9]= |  | 
FractionalOrderD may return results in terms of inactivated symbols like Sum, Product, Table, MeijerG, etc:
| In[10]:= | ![res1 = ResourceFunction["FractionalOrderD"][
  ChebyshevT[n, x], {x, \[Alpha]}]](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/43120856bd2ad9d8.png) | 
| Out[10]= |  | 
| In[11]:= | ![res2 = ResourceFunction["FractionalOrderD"][
  E^-\[FormalZ]^\[FormalM], {\[FormalZ], \[Alpha]}]](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/6c6cac72610ee7fe.png) | 
| Out[11]= |  | 
In order to use such expressions, first substitute appropriate values of symbolic parameters and then apply Activate:
| In[12]:= |  | 
| Out[12]= |  | 
| In[13]:= | ![res2 /. {\[FormalM] -> 3} // Activate](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/1f8fcdef373c2458.png) | 
| Out[13]= |  | 
In cases where only partial evaluation is possible, results may be returned that contain unevaluated FractionalOrderD expressions:
| In[14]:= | ![ResourceFunction[
 "FractionalOrderD"][(E^x Gamma[-x, x])/Gamma[-x], {x, \[Beta]}]](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/7a4e78c8ed0edc84.png) | 
| Out[14]= |  | 
Varying α from 0 to -1 smoothly interpolates between a function and its derivative:
| In[15]:= | ![f[x] := x^3 Sin[x];
Manipulate[
 Plot[Evaluate@{f[x], D[f[x], x], ResourceFunction["FractionalOrderD"][f[x], {x, m}]}, {x, 0, 5}], {m, 0, -1}, SaveDefinitions -> True]](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/090e785d0ca85bcd.png) | 
| Out[15]= |  | 
Create a table of fractional derivatives:
| In[16]:= | ![flist = {E^(x), x^2, Log[x], Sin[x], ArcTan[x], Cosh[x], ArcCosh[x], EllipticE[x], BesselJ[0, x]};](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/6cfe2a1b2e14ae7a.png) | 
| In[17]:= | ![Grid[Join[{{f[x], "FractionalOrderD"[f[x], {x, n}]}}, Transpose[{flist, ResourceFunction["FractionalOrderD"][flist, {x, n}]}]], Background -> {None, {{None, GrayLevel[.9]}}, {{1, 1} -> Hue[.6, .4, 1], {1, 2} -> Hue[.6, .4, 1]}}, BaseStyle -> {FontFamily -> Times, FontSize -> 12}, Dividers -> All,
   FrameStyle -> Hue[.6, .4, .8], Spacings -> {2, 1}] // TraditionalForm](https://www.wolframcloud.com/obj/resourcesystem/images/b8a/b8a39393-8652-47a7-95ad-cbc6bddd9685/4d4d114e641c92f3.png) | 
| Out[17]= |  | 
This work is licensed under a Creative Commons Attribution 4.0 International License