Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Convert a mathematical expression into an equivalent expression with head FoxH
ResourceFunction["FoxHForm"][f,z] expresses the function f, written in terms of the independent variable z, in terms of FoxH when possible. |
Get the Fox H form of a trigonometric function:
| In[1]:= |
| Out[1]= |
Activating the result allows the FoxH to evaluate, giving back the original function:
| In[2]:= |
| Out[2]= |
Represent BesselJ in terms of FoxH:
| In[3]:= |
| Out[3]= |
Recover the original function using Activate:
| In[4]:= |
| Out[4]= |
Rational functions:
| In[5]:= |
| Out[5]= |
| In[6]:= |
| Out[6]= |
Algebraic functions:
| In[7]:= |
| Out[7]= |
Trigonometric functions:
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= |
Linear combination of trigonometric functions:
| In[10]:= |
| Out[10]= |
Inverse trigonometric and hyperbolic functions:
| In[11]:= |
| Out[11]= |
| In[12]:= |
| Out[12]= |
Airy functions:
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= |
Bessel functions:
| In[15]:= |
| Out[15]= |
| In[16]:= |
| Out[16]= |
Legendre functions:
| In[17]:= |
| Out[17]= | ![]() |
Mittag-Leffler functions:
| In[18]:= |
| Out[18]= |
| In[19]:= |
| Out[19]= |
Hypergeometric functions:
| In[20]:= |
| Out[20]= |
Elliptic integrals:
| In[21]:= |
| Out[21]= |
| In[22]:= |
| Out[22]= |
If a FoxH representation cannot be found, the function returns unevaluated:
| In[23]:= |
| Out[23]= |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License