Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find the equation for an ellipse given two foci and a point
ResourceFunction["FociPointEllipse"][{f1,f2,p},{x,y}] returns the ellipse A x2+B x y+C y2+D x+E y+F in the variables x and y, given the foci f1,f2 and a point p through which the ellipse passes. | |
ResourceFunction["FociPointEllipse"][{f1,f2,p},t] returns a parametric equation in the variable t. | |
ResourceFunction["FociPointEllipse"][{f1,f2,p}] returns an Ellipsoid object representing the ellipse. |
Find the Cartesian equation of an ellipse with foci (3,3) and ) that goes through point
):
In[1]:= | ![]() |
Out[2]= | ![]() |
Show the ellipse:
In[3]:= | ![]() |
Out[3]= | ![]() |
Generate the parametric equations of an ellipse with foci (3,3) and ) that goes through point
):
In[4]:= | ![]() |
Out[5]= | ![]() |
Show the ellipse:
In[6]:= | ![]() |
Out[6]= | ![]() |
Generate the corresponding Ellipsoid object:
In[7]:= | ![]() |
Out[7]= | ![]() |
Show the ellipse:
In[8]:= | ![]() |
Out[8]= | ![]() |
Use a different set of variables:
In[9]:= | ![]() |
Out[9]= | ![]() |
Use formal variables:
In[10]:= | ![]() |
Out[10]= | ![]() |
Use FociPointEllipse to generate the implicit Cartesian equation of an ellipse:
In[11]:= | ![]() |
Out[12]= | ![]() |
Use GroebnerBasis to get an equivalent result:
In[13]:= | ![]() |
Out[13]= | ![]() |
Generate an equivalent parametric equation:
In[14]:= | ![]() |
Out[14]= | ![]() |
Use GroebnerBasis to derive the implicit Cartesian equation from the parametric equation:
In[15]:= | ![]() |
Out[15]= | ![]() |
Use the resource function EllipseProperties to generate properties of the ellipse:
In[16]:= | ![]() |
Out[16]= | ![]() |
Get an ellipse equation:
In[17]:= | ![]() |
Out[17]= | ![]() |
Show positions for coefficients in A x2+B x y+C y2+D x+E y+F=0:
In[18]:= | ![]() |
Out[18]= | ![]() |
Get the coefficients:
In[19]:= | ![]() |
Out[19]= | ![]() |
See the coefficients in the standard order:
In[20]:= | ![]() |
Out[20]= | ![]() |
Construct an ellipse from given foci and a point:
In[21]:= | ![]() |
Out[22]= | ![]() |
Use three mysterious points to create a complex cubic, take the derivative and solve the quadratic to find foci that happen to be F and G:
In[23]:= | ![]() |
Out[24]= | ![]() |
In Marden's theorem, the above step finds the foci of an inellipse that is tangent to the midpoints of the sides of the triangle generated by vertices PQR:
In[25]:= | ![]() |
Out[25]= | ![]() |
The resulting inellipse is a scaled version of the Steiner circumellipse, with a scaling factor of 1/2. Use the resource function SteinerCircumellipse to produce an equivalent figure:
In[26]:= | ![]() |
Out[27]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License