Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find the integer square root of a positive integer
ResourceFunction["FloorSqrt"][n] computes the floor-integer square root of positive integer n. |
Compute the floor of the square root for an integer:
In[1]:= | ![]() |
Out[2]= | ![]() |
Check that it is correct:
In[3]:= | ![]() |
Out[3]= | ![]() |
If n is a square then FloorSqrt[n]==Sqrt[n]:
In[4]:= | ![]() |
Out[4]= | ![]() |
For large n, FloorSqrt is typically much faster to compute than Sqrt:
In[5]:= | ![]() |
Out[6]= | ![]() |
Here is an asymptotically fast divide-and-conquer code based on Zimmermann's Karatsuba method:
In[7]:= | ![]() |
Compare speed to FloorSqrt on a large input:
In[8]:= | ![]() |
Out[9]= | ![]() |
FloorSqrt only supports positive integers:
In[10]:= | ![]() |
Out[10]= | ![]() |
Use Floor to convert the input to an integer before using FloorSqrt:
In[11]:= | ![]() |
Out[11]= | ![]() |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License