Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find all proper k-colorings of a specified graph
ResourceFunction["FindProperColorings"][g,k] finds all proper k-colorings of the graph g. |
Define a graph:
In[1]:= |
Out[1]= |
Find all its proper 3-colorings:
In[2]:= |
Out[2]= |
Display the proper 3-colorings:
In[3]:= |
Out[4]= |
FindProperColorings works on disconnected graphs:
In[5]:= |
Out[5]= |
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
FindProperColorings works on directed graphs:
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
In[10]:= |
Out[10]= |
FindProperColorings works on multigraphs:
In[11]:= |
Out[11]= |
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
Define a graph:
In[14]:= |
Out[14]= |
A proper k-edge-coloring of a graph g is a function assigning each edge of g one of k colors such that incident edges receive distinct colors:
In[15]:= |
Find the proper 3-edge-colorings of the graph:
In[16]:= |
Out[16]= |
Display the proper 3-edge-colorings:
In[17]:= |
Out[9]= |
Define a graph:
In[18]:= |
Out[18]= |
The chromatic polynomial f of a graph g is a function such that f(k) counts the proper k-colorings of g. Here is the chromatic polynomial of g3:
In[19]:= |
Out[19]= |
Use the chromatic polynomial to count the proper k-colorings of g3 for 1≤k≤5:
In[20]:= |
Out[20]= |
Confirm that this matches the number of proper colorings returned by FindProperColorings:
In[21]:= |
Out[21]= |
This work is licensed under a Creative Commons Attribution 4.0 International License