Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Find all proper k-colorings of a specified graph
ResourceFunction["FindProperColorings"][g,k] finds all proper k-colorings of the graph g. |
Define a graph:
| In[1]:= |
| Out[1]= | ![]() |
Find all its proper 3-colorings:
| In[2]:= |
| Out[2]= |
Display the proper 3-colorings:
| In[3]:= |
| Out[4]= | ![]() |
FindProperColorings works on disconnected graphs:
| In[5]:= |
| Out[5]= | ![]() |
| In[6]:= |
| Out[6]= |
| In[7]:= |
| Out[7]= | ![]() |
FindProperColorings works on directed graphs:
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= |
| In[10]:= |
| Out[10]= | ![]() |
FindProperColorings works on multigraphs:
| In[11]:= |
| Out[11]= | ![]() |
| In[12]:= |
| Out[12]= |
| In[13]:= |
| Out[13]= | ![]() |
Define a graph:
| In[14]:= |
| Out[14]= | ![]() |
A proper k-edge-coloring of a graph g is a function assigning each edge of g one of k colors such that incident edges receive distinct colors:
| In[15]:= |
Find the proper 3-edge-colorings of the graph:
| In[16]:= |
| Out[16]= |
Display the proper 3-edge-colorings:
| In[17]:= |
| Out[9]= | ![]() |
Define a graph:
| In[18]:= |
| Out[18]= | ![]() |
The chromatic polynomial f of a graph g is a function such that f(k) counts the proper k-colorings of g. Here is the chromatic polynomial of g3:
| In[19]:= |
| Out[19]= |
Use the chromatic polynomial to count the proper k-colorings of g3 for 1≤k≤5:
| In[20]:= |
| Out[20]= |
Confirm that this matches the number of proper colorings returned by FindProperColorings:
| In[21]:= |
| Out[21]= |
This work is licensed under a Creative Commons Attribution 4.0 International License