Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Factor an integer using Hart's one line factoring algorithm
ResourceFunction["FactorIntegerHart"][n] returns a pair of factors of the integer n, using Hart’s algorithm. |
Original example given by Hart:
In[1]:= | ![]() |
Out[1]= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
Hart's algorithm will work when the base is rational, in this case the base is 101/11:
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
The coefficients may also be (distinct) rational numbers:
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
The exponents of the base can be distinct, providing they are sufficiently close:
In[7]:= | ![]() |
Out[7]= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
By default, the maximum number of iterations is 216:
In[9]:= | ![]() |
Out[9]= | ![]() |
Increasing MaxIterations allows us to factor this integer:
In[10]:= | ![]() |
Out[10]= | ![]() |
For the applicable class of semiprimes, FactorIntegerHart will usually be much faster than FactorInteger:
In[11]:= | ![]() |
Out[11]= | ![]() |
In[12]:= | ![]() |
Out[12]= | ![]() |
Unlike FactorInteger, the factors returned by FactorIntegerHart may not be prime:
In[13]:= | ![]() |
Out[13]= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
Factoring an enormous semiprime:
In[15]:= | ![]() |
Out[15]= | ![]() |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License