Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
A partial fraction decomposition with the Extension option
| ResourceFunction["ExtendedApart"][exp,var] rewrites a rational expression as a sum of terms with minimal degree denominators in the complex domain, treating all variables other than var as constants. | |
| ResourceFunction["ExtendedApart"][exp,var,Extension→{a1,a2,…}] allows coefficients that are rational combinations of the algebraic numbers ai. | 
Decompose a rational expression into partial fractions:
| In[1]:= | ![ResourceFunction["ExtendedApart"][1/(x^2 + 1), x]](https://www.wolframcloud.com/obj/resourcesystem/images/ba0/ba06f845-d212-40e8-a806-d801d2bd0af4/5d88927ad8be1ea0.png) | 
| Out[1]= |  | 
Compare with Apart:
| In[2]:= | ![Apart[1/(x^2 + 1), x]](https://www.wolframcloud.com/obj/resourcesystem/images/ba0/ba06f845-d212-40e8-a806-d801d2bd0af4/1ed51ead30863eaa.png) | 
| Out[2]= |  | 
Factor the denominator into linear factors:
| In[3]:= | ![ResourceFunction["ExtendedApart"][1/(x^2 - 2), x]](https://www.wolframcloud.com/obj/resourcesystem/images/ba0/ba06f845-d212-40e8-a806-d801d2bd0af4/07db24cc76e29296.png) | 
| Out[3]= |  | 
Decompose allowing complex coefficients:
| In[4]:= | ![ResourceFunction["ExtendedApart"][1/(x^2 + a^2), x]](https://www.wolframcloud.com/obj/resourcesystem/images/ba0/ba06f845-d212-40e8-a806-d801d2bd0af4/53fe371c7857d81d.png) | 
| Out[4]= |  | 
| In[5]:= | ![ResourceFunction["ExtendedApart"][1/(x^3 + 1), x]](https://www.wolframcloud.com/obj/resourcesystem/images/ba0/ba06f845-d212-40e8-a806-d801d2bd0af4/7030a54a25c8038c.png) | 
| Out[5]= |  | 
| In[6]:= | ![ResourceFunction["ExtendedApart"][1/(x^4 + a^4), x]](https://www.wolframcloud.com/obj/resourcesystem/images/ba0/ba06f845-d212-40e8-a806-d801d2bd0af4/33aa62fb2fde775d.png) | 
| Out[6]= |  | 
| In[7]:= | ![Simplify /@ (ResourceFunction["ExtendedApart"][1/(1 + x + x^3), x] // ToRadicals) // TraditionalForm](https://www.wolframcloud.com/obj/resourcesystem/images/ba0/ba06f845-d212-40e8-a806-d801d2bd0af4/21761c07a286deeb.png) | 
| Out[7]= |  | 
Allow the rationals extended by the algebraic number coefficients:
| In[8]:= | ![ResourceFunction["ExtendedApart"][(1 + x)/(x^2 + 2 Sqrt[2] x + 2), x, Extension -> Automatic]](https://www.wolframcloud.com/obj/resourcesystem/images/ba0/ba06f845-d212-40e8-a806-d801d2bd0af4/5a28f1dcab0cefd8.png) | 
| Out[8]= |  | 
Allow a finite algebraic extension of rationals:
| In[9]:= | ![ResourceFunction["ExtendedApart"][1/(x^3 - 2), x, Extension -> 2^(1/3)]](https://www.wolframcloud.com/obj/resourcesystem/images/ba0/ba06f845-d212-40e8-a806-d801d2bd0af4/05678c4cfa0f6dab.png) | 
| Out[9]= |  | 
ExtendedApart threads over lists:
| In[10]:= | ![ResourceFunction["ExtendedApart"][{1/(x^2 - 1), 1/(x^2 + 1)}, x]](https://www.wolframcloud.com/obj/resourcesystem/images/ba0/ba06f845-d212-40e8-a806-d801d2bd0af4/05e40ccbe9013bc5.png) | 
| Out[10]= |  | 
This work is licensed under a Creative Commons Attribution 4.0 International License