Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the multidimensional corner angle
ResourceFunction["ErikssonCornerAngle"][o,{p1,…,pd}] gives the corner angle at the point o and spanned by the vectors p1,…,pd. |
The corner angle at the origin for vectors in two dimensions:
| In[1]:= |
| Out[1]= |
The corner angle at the origin for vectors in three dimensions:
| In[2]:= |
| Out[2]= |
ErikssonCornerAngle works in any number of dimensions:
| In[3]:= |
| Out[3]= |
| In[4]:= |
| Out[4]= | ![]() |
| In[5]:= |
| Out[5]= | ![]() |
Compute the corner angle for various Platonic solids:
| In[6]:= | ![]() |
| Out[6]= |
Generate a random simplex:
| In[7]:= |
| Out[7]= | ![]() |
Compute all the corner angles of the simplex:
| In[8]:= |
| Out[8]= |
In two dimensions, ErikssonCornerAngle is similar to the results of SolidAngle and PlanarAngle:
| In[9]:= |
| Out[9]= | ![]() |
In three dimensions, the difference between ErikssonCornerAngle and SolidAngle is more apparent:
| In[10]:= | ![]() |
| Out[10]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License