Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the multidimensional corner angle
ResourceFunction["ErikssonCornerAngle"][o,{p1,…,pd}] gives the corner angle at the point o and spanned by the vectors p1,…,pd. |
The corner angle at the origin for vectors in two dimensions:
In[1]:= | ![]() |
Out[1]= | ![]() |
The corner angle at the origin for vectors in three dimensions:
In[2]:= | ![]() |
Out[2]= | ![]() |
ErikssonCornerAngle works in any number of dimensions:
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
Compute the corner angle for various Platonic solids:
In[6]:= | ![]() |
Out[6]= | ![]() |
Generate a random simplex:
In[7]:= | ![]() |
Out[7]= | ![]() |
Compute all the corner angles of the simplex:
In[8]:= | ![]() |
Out[8]= | ![]() |
In two dimensions, ErikssonCornerAngle is similar to the results of SolidAngle and PlanarAngle:
In[9]:= | ![]() |
Out[9]= | ![]() |
In three dimensions, the difference between ErikssonCornerAngle and SolidAngle is more apparent:
In[10]:= | ![]() |
Out[10]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License