Function Repository Resource:

# Erfci

Set up a symbol to give an error message when called with an unexpected number of arguments

Contributed by: Paco Jain (Wolfram Research)
 ResourceFunction["Erfci"][x] computes the definite integral of Erfc[x].

## Details and Options

Mathematical function, suitable for both symbolic and numerical manipulation.
The ResourceFunction["Erfci"] function is defined through Integrate[Erfc[t],{t,0,x}]+C, where C=-1/Sqrt[π] is an integration constant. In closed form this is equivalent to Exp[-x^2]/Sqrt[π] + x Erfc[x].
ResourceFunction["Erfci"] has the attributes Listable and NumericFunction.
ResourceFunction["Erfci"] can be evaluated to arbitrary numerical precision.

## Examples

### Basic Examples

Plot the Erfci function:

 In[1]:=
 Out[1]=

Examine some particular values:

 In[2]:=
 Out[2]=
 In[3]:=
 Out[3]=

### Scope

Erfc can be applied to complex values:

 In[4]:=
 Out[4]=
 In[5]:=
 Out[5]=

When applied to numerical values, Erfc reflects the precision of its input:

 In[6]:=
 Out[6]=

## Requirements

Wolfram Language 11.3 (March 2018) or above