Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Epstein–Hubbell integral
ResourceFunction["EpsteinHubbellOmega"][n,m] gives the Epstein–Hubbell integral Ωn(m). |
Evaluate numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot Ω2(m):
In[2]:= | ![]() |
Out[2]= | ![]() |
Series at the origin:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate for complex arguments and orders:
In[4]:= | ![]() |
Out[4]= | ![]() |
Evaluate to high precision:
In[5]:= | ![]() |
Out[5]= | ![]() |
The precision of the output tracks the precision of the input:
In[6]:= | ![]() |
Out[6]= | ![]() |
EpsteinHubbellOmega threads elementwise over lists:
In[7]:= | ![]() |
Out[7]= | ![]() |
Log plot of a family of Epstein–Hubbell integrals:
In[8]:= | ![]() |
Out[8]= | ![]() |
For integer n, EpsteinHubbellOmega can be expressed in terms of EllipticE and EllipticK:
In[9]:= | ![]() |
Out[9]= | ![]() |
For integer n, EpsteinHubbellOmega can be expressed in terms of half-integer order LegendreP:
In[10]:= | ![]() |
Out[10]= | ![]() |
For integer n, EpsteinHubbellOmega can be expressed in terms of LegendreQ:
In[11]:= | ![]() |
Out[11]= | ![]() |
Express an Epstein–Hubbell integral of noninteger order in terms of simpler functions:
In[12]:= | ![]() |
Out[12]= | ![]() |
Compare EpsteinHubbellOmega with the integral definition:
In[13]:= | ![]() |
Out[13]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License