Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the final angles of a double pendulum based on initial conditions
ResourceFunction["DoublePendulumFormula"][parameters,initalcond] computes the pendulum angles based on system parameters and initial conditions initialcond. | |
ResourceFunction["DoublePendulumFormula"][property] returns the specified property of the double pendulum formula. |
| l1 | pendulum 1 length |
| l2 | pendulum 2 length |
| m1 | pendulum 1 mass |
| m2 | pendulum 2 mass |
| t | time |
| θ1,i | pendulum 1 initial angle from vertical |
| θ2,i | pendulum 2 initial angle from vertical |
| "Formula" | equations for double pendulum |
| "QuantityVariableDimensions" | list of base dimensions for all variables |
| "QuantityVariableNames" | English names for all variables |
| "QuantityVariablePhysicalQuantities" | physical quantities for all variables |
| "QuantityVariables" | list of all variables |
| "QuantityVariableTable" | details on all variables |
Solve for the final angles from the vertical for a double pendulum:
| In[1]:= | ![]() |
| Out[1]= | ![]() |
Specify gravitational acceleration:
| In[2]:= | ![]() |
| Out[2]= | ![]() |
Examine the equations of motion for a double pendulum:
| In[3]:= |
| Out[3]= |
Find the quantity variables used by the DoublePendulumFormula:
| In[4]:= |
| Out[4]= |
Obtain their formal names:
| In[5]:= |
| Out[5]= | ![]() |
Derive the physical quantities and unit dimensions of the variables:
| In[6]:= |
| Out[6]= |
| In[7]:= |
| Out[7]= | ![]() |
A table combining all the information about the quantity variables used or derived by DoublePendulumFormula:
| In[8]:= |
| Out[8]= | ![]() |
See how the pendulum angles evolve over time:
| In[9]:= | ![]() |
| In[10]:= |
| Out[10]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License