Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the final angles of a double pendulum based on initial conditions
ResourceFunction["DoublePendulumFormula"][parameters,initalcond] computes the pendulum angles based on system parameters and initial conditions initialcond. | |
ResourceFunction["DoublePendulumFormula"][property] returns the specified property of the double pendulum formula. |
l1 | pendulum 1 length |
l2 | pendulum 2 length |
m1 | pendulum 1 mass |
m2 | pendulum 2 mass |
t | time |
θ1,i | pendulum 1 initial angle from vertical |
θ2,i | pendulum 2 initial angle from vertical |
"Formula" | equations for double pendulum |
"QuantityVariableDimensions" | list of base dimensions for all variables |
"QuantityVariableNames" | English names for all variables |
"QuantityVariablePhysicalQuantities" | physical quantities for all variables |
"QuantityVariables" | list of all variables |
"QuantityVariableTable" | details on all variables |
Solve for the final angles from the vertical for a double pendulum:
In[1]:= |
Out[1]= |
Specify gravitational acceleration:
In[2]:= |
Out[2]= |
Examine the equations of motion for a double pendulum:
In[3]:= |
Out[3]= |
Find the quantity variables used by the DoublePendulumFormula:
In[4]:= |
Out[4]= |
Obtain their formal names:
In[5]:= |
Out[5]= |
Derive the physical quantities and unit dimensions of the variables:
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
A table combining all the information about the quantity variables used or derived by DoublePendulumFormula:
In[8]:= |
Out[8]= |
See how the pendulum angles evolve over time:
In[9]:= |
In[10]:= |
Out[10]= |
This work is licensed under a Creative Commons Attribution 4.0 International License