Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Return a canonical rotation/reflection for a point set
ResourceFunction["DihedralCanonicalization"][points] find a canonical rotation, reflection and ordering for 2D pointset points. |
Canonicalize a set of points:
In[1]:= | ![]() |
Out[1]= | ![]() |
Verify that applying the function to a canonicalized set returns the same set:
In[2]:= | ![]() |
Out[2]= | ![]() |
Show before/after to reveal the pattern has rotated counterclockwise:
In[3]:= | ![]() |
Out[3]= | ![]() |
Find invariant pairs of points:
In[4]:= | ![]() |
Out[5]= | ![]() |
Find invariant pairs of points with maximal absolute value 2:
In[6]:= | ![]() |
Out[7]= | ![]() |
There are a few hundred of pairs2:
In[8]:= | ![]() |
Out[8]= | ![]() |
The canonical invariants are a much smaller set:
In[9]:= | ![]() |
Out[9]= | ![]() |
Count the number of invariants with maximal absolute value n:
In[10]:= | ![]() |
Out[11]= | ![]() |
Obtain values for a related cubic:
In[12]:= | ![]() |
Out[12]= | ![]() |
Find invariant triples:
In[13]:= | ![]() |
Out[14]= | ![]() |
Show the 16 invariant triples:
In[15]:= | ![]() |
Out[15]= | ![]() |
Curiously, the number of invariant triples grows as follows:
In[16]:= | ![]() |
Out[16]= | ![]() |
Repeated points will be tossed out:
In[17]:= | ![]() |
Out[17]= | ![]() |
In[18]:= | ![]() |
Out[18]= | ![]() |
Wolfram Language 14.0 (January 2024) or above
This work is licensed under a Creative Commons Attribution 4.0 International License