Function Repository Resource:

DeepFryImage

Source Notebook

Deep-fry an image

Contributed by: Logan Gilbert

ResourceFunction["DeepFryImage"][image]

deep-fries an image.

Details and Options

Deep-frying an image involves running a given image through a bunch of image filters to the point where the image appears grainy, washed-out, and strangely colored. This implementation does so through adjusting image contrast and repeatedly sharpening the image.
DeepFryImage accepts the following options:
"BakeTime"4how many times to sharpen the image
"Flare"Falsewhether to add a lens flare over the eyes
“SharpenRadius"50size of the image sharpening radius

Examples

Basic Examples (1) 

Deep-fry a test image:

In[1]:=
ResourceFunction["DeepFryImage"][ExampleData[{"TestImage", "Girl"}]]
Out[1]=

Scope (1) 

Deep-fry the Mona Lisa:

In[2]:=
ResourceFunction["DeepFryImage"][\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJw8ugV0W4e2rqs4JjFbtmRmZpSZmZmZZLZlZmZmxphjipkxtuMwp2kbapM0
KezdDWe/e+4b702l516N6ZVlOUO2vvXPf/5TkkREikcMFwKByOCHg0d4tnl6
eniuJwG+8U7OiI9Njo6yT2ZHx0an60dchztt4CsMvjjn4dFWPgF6wcF6/gGa
vr5avv7agaHMxAyHmCSrFLZjRKRBTLRBXIxuRJh6fIxheqptSrIFO9M+L9+z
qNg3KcEiMcE0M92WnW6RkmCUlmScm2aRnWaalWGUk22aw7YqzHesqvIqLHap
LPOurQkoqvCq6QyrHUnMb/GranCrqXGqLHerq/VvbAgpq/CurQ9o6wzrHohp
64rs6Izv7knt7EqGY0d3Yv9g8vBA/Fh/1NRA1NRgxNhA2NRo7MxQ3FRf9Oxg
zM3R2OnB6NnRuOlhTs2NsOaHWSs30tamM1ankzfnU3fm0xaGo9ZvJK1MJi5M
J6+u5G4sF95aLJ6fK9zcqN3ZqNldrzrYqN1br9lZb9hab9xcbV6cr715s352
rjYi0jwgSC8oSNfLWyU4RDcwUCcwWNc/RDcgVDc8ygD4REfpJ7GME+ON0pIt
szLsgEZWpn0W2zE/142dZpPNts/JtMvOtE5mMTNTTAszbXLTzLLTDQuyzQqy
rHIzrUuLXaDKij0qyr1LKz2BT91gTGGTb3G5TXWlQ32NZ221T3NTWE21f0MD
h09jS2BDS3BHV2xrW1xLa2xHZ0JXd8LgQPLIIGtmLAE43ByPg+fI4TMYvwwQ
ZtNXZ9IWJxLnRxPmxxOXp9NWZzKAzNZ89uYce285e3shfX+RvTGdtDmVsr+Y
tbmStbqYDXw2bpWvrlcfHHbs7zQBmdPdppPdpgM4327d2+pYW2leWWkBPmEh
elChYfq+fqphoVqBAaqRUczQMF3/APXYOKP4OKPEeJPUJIuURHN2qmUO27Yw
y4GdZJ6dapXGMmEnmWYmm7FT4UfmKQmGwCcn1bQww6w406wwzbgg1Swn2biy
0KmmzKO80Lm63LOs0q25J7xpMKqq1bu+3rG13rmp1qOhyquxPrChLqC+1q+1
Oai5Lbi9K7ytNbyrM7qvN2GgN3F4IKW/O26gK2K4M+xGX9TNMRZAWJ7NWJ3N
XJnO2FzI3VnJByaLE8kb81lQ2zdzb02mbc6kb82mbc2mcMjMp3JqKmX3Jntr
KXNrNW9vs3R3u/b4rOvwpOfkqO/0oPt0r/Vsr/l0r/lgu2Vvq31jDfg0ra62
hAXpRkcyY2KNIyL1oiJ1IsK1ElgmrDjTyAjd2BgmNFdUuG58jHESyxT0k55s
Dnwyk0zTWEZ5Gdb5GdZZKeZJ8cz0ZBNoroIsm7x084J08+IM8/Js68pc+7Is
m+pCp9pil9pSj9py97o6n+bukNqOgOpWr5Zm144mt7Z6746moOb6wObGoJbG
gI620OHhhN7e6P7++OHhpMH+hOHBpJGBxOHe+JHe6PmxJIAAtTSVOjeRtDzL
XprJXL2ZvbWYtz6btXUzd2OWA2dnIW99hr16I3l9KnlrNmN7Ln1/JWd3KWt3
LmNvIfNgLW99KQv4HO7XH5123rk3dnU5fn4yeLDZdLhVf7zdcLDZsLPZvLPV
trneAnziYszCwg2iY4w4rRTDjIzSB1ZR0YaxcSZR0QYgIXCY5ERLsJq0FBvQ
EmApyrYvyLEvL/YozXPLZzukJZmwU80Kcuzy2BYlOfbFbJuyHNvyXLvKPKfq
ApfGUvfmcs/Wah/QSXW1Z1Wjb2NPSGWzZ1ubT1erb1dLUF93VGd7RFdH+MhQ
wtBA/MhQUndnFJC5MZ7R3xvX1RYx1BMzNZh4o581O5Q4P5ywNM5BtHAjeWEi
BcSzvVS4Pp97uFpyvFa6Opm5OcuhtDqVDi0GlIDV3lLByWrh4XIe1MFK/tFq
8cF68cVx0+V5x53L/vt3x+9djl+cDt0+6j/a7TjZbTnYrNvbbNrfbd9cbwZE
LJZVVIxpQqJVeIR+QqJZcopleoZ9WrpdYpJlXLxpfKJpUqp1foEHO9MxO8cl
L9e5KM+xvNCxvMS5ON+xNM+lJNc5D3w4z7a0yLEkz66iwLEsz/EvMlX5znXF
7g0lbm1VXr3NIf2dkTU1Pk3twa0DEVUtXs1N3h3NvgBnsDd+fDR5dDhxbCRp
Zop9YzRtejJzfjYXjmMjKfDTG4OJsyNJk32smUGAkwLPfelGyuo0e+Nm3uF6
JdT+ainwOVotATh7i0U7C4AoE/wHTg5XSo9Xy09uFQOig8X8w1tFpxvlJ1tV
lyfN9676Ls56Ls76bp/0XZ4NX52PAaK/+Oxu1m6t195arltdaUhMto9mWURE
GcUnmqekWqWmWcfFG8fEGiYmmadm2KRk2qfnOmcVembmuReVelVX+VWWexTl
2xQVWJbkWwGQ4lzbgiyLmnKnimK7ymLHqmLH6mKX8nyn8hyHmkK3hmKPxmKX
plLnwdbQvrbwhjrfzr6o9oHI8nq3hnqP9ibfgd6YwX7WYH8ckJmeYE+Opa/M
Fa4sFG2vV8EROmt6LH1uPH1+LG1+JHV5nL04mjo3xAJKG3O5a7OF+ys1MHeO
t2v3louP1kqhvvVX7t5C9u7NLMByulp6sVl5Z6vyeKXobK3sfLvq9mb12U7N
+VHz1Xn35e3es+Pu06Ouy9uDx/s9Z4c9l8cdJzt1u+sV6yvlq8s14EIxLOvw
GJPIOFNWkgULWinVPD6OGR+nHxdrkJFlm1noklnknlXslV3kVVzqAcO6psqz
ssyxrNCyvsqprNCmvNC+oti2tsKpscatvMi2usShptS5LM++qsCRo5wKz/Yq
945qt6HW4J4m/5Zm/47e0J6xmJo2n77esL7OkN6uSGgiaKvJ8dSp0ZSJgaSb
N7IXZ3KX5gs2VkuXZvNWZnMXJjMXJjKAz9JYBnTQ0lja6lQG8Nm8WXK02Xi0
Vb+/XglkjjdKd5cKtm/mHCxx+MDx9kbJKehqufBstehkpeDOdvWd3frTzaqT
rZrT/abTw9azo477VyMnh52govPT/tODTuB256Rxf6N0Z618balqf7sjNsEu
Ot4qjmUJngOGk5hgmJZilJpikBCvm862yMx3zCn2zC3zzS32LICGKnZqrPNt
bfIHGq0NXg21Xi2Nfg3VrnWVjrXl9vUVzs2VbvWlTo3lLq2V7h0Vbn31XsPt
/kNtPoOt3n0t3i1Nnt2DoQPTrJoOn/6+8LHBmJG+OOggyDazE6kTg/Fzo6k3
x9jzE5lAZm2leGU+b3kmZ3U6Z302Z/lGxq2pzJXJrN2looOVIkCxC42zU3e8
U32yVXF7F8STv7eUD+I5WMrev5l5tJRzvJwPWPbms05W8k5v5d9eL4PmAj5n
O3Une43nJx2X0F+n3Ye7zbeP2++c992/03d52nhxDPTKdlYL9zdqwbQBTkSU
cVy8eWS4PkwrUA7AKci3TE8zzMgwzyt0yS/1zC/1Lin3KStxrSx25ozjas/W
Oq/OFv+ulpCO1iAA1VLnxqlql/Y6z94mv656765aj65ql6Fmr7GugNEuv4Em
9/HewN4ev4GRyIml9K6RyOHBiIn+qJGe2NFe1uRQys0bWSs3YC4XrE4Wb86W
r98s21urBoUsjWetTmavT3+r2Zy1meytm/n7ywUHq0VHm6V768WnO2UA52Sj
8HA1b/tmFkzw7dmUw6XM0+Xco4Wsi43So6W8w8Xsk9V8jgutl13s1p3v1d3e
b7xz2vHgsvfu7S7Q0u3jNmi3+1ddd8+azg7Kj7byD9YL91fL99fqomJM4lkW
MNBZsUbJSaYZ6RbZmVYFebZQhYWOVZW+pSUexQWuVWWeFUUuTVXeUG31vu0N
Pk3V7u31AS01vo1Vrt1N3oMd/p0Nnt/IePU2evY3uA81eY61+/U3e/a3eIy2
+0wNhAz2BgyPRI3Ppd6YS5kaipzsDpsdSl4az741UTjVndFeHtGQH1ye7lOW
5lmb69dRETHamrQ4mLk9U7gzWwB8/pIQjPKdBUh97P3V7L1bmQer6UfrWQe3
co/XimB8795MP1jMOFpgny3lnq3kXW1XnK+XnG+WnqwXn21WnG/V3DtqhLo8
aLg6anp4u/XhZfv5Yd29220P7/Xdvey4Om26Oq492ynZW80HPodrNexsp8QU
q5Qkq5xsx9QU88ICJ1gK2OnmRQWO5aVu1eVegKWmxB38tr4UesetrsS1pcoT
Clqpocy9ocy1rdq9p9lnoNV/sC2gs4bjNsMt3r31Lv31rsPNnqCcsQ7f6d6Q
kS7/saHw0bGY8enkmZmMpYnUjcmc0bb49AgzdxNxpixOic6rJo6VF+JVZPCr
iaKUhXl0pNBOBox4b+2aLLe53rSd2eKViUwY3CCSk7Wc49Xso3X23ePC8928
sy3QRvHhMnhy9vFK9v5c2vFi9tVmCegHJhegO9ssvdiphrp/Un+2XXZ1WHPn
oPrJRcuji+a7R7VPrzqePex9/qjv/lnT4/Pmi/3So42Cg7Wyw7Xq2CRzqJx8
t9wC9/wCt9ISr+JC59xsG1gNKoqcakvdaoo4TltX4Fyb71Rf7AphprncvaXC
o6PGq63KY6AlqLfBd6A1cKQ9ZKQ9aLgtsKfBo6fOebDRdbTZdajZZbzde6o3
aLjTb7Q/dGEhtW8ofPpm5uqt8uG2FH87ZUUBhCwRoS6ElsByiZBRVBwvg4IR
JqMkaDhFEYqcEE6BhtQUwSjREBbKlOwIy4WetI0bGZvTSYcrGQfL6Rd7hZf7
Bee7BcfrBbc3ivYX0rdnk4+Xc8FtwHOgsy42yi82Ky52KoAJcLh/Wnt1WHbn
oPDBacWD06rnd5pe3m9/fLvh2VXLi0ed3z/ve3i7/tEZ/J+Ss52i483y0936
qATTlCyH1Cy7vEK3snLoJq+cLJv8bNvCbOuSHNvaQseWcteWMvcWkE2ZZ3ul
T3u1b09DQE+df1etd1+j31hnyFBrECyJE91h412h493B4x3+Y21e830BS0NB
sz0+o23uN4fDpgHLWMzNueTJqeSV1fKyIn8FER4SAiGDR3gbKtqpS8uRMaJk
PAWDJGFROCQvGc1P5OMRQCPFSBh9OTETRTEdMaIYEmEgzdeY57G/kH+wlHm0
nHm5U3DnCJ5LIfjP0UoudNbZWi7wOVvl4IL5BTPr7m7t+W7FxUHVg9uN3z3u
eHW/4f5p4f3T4udXtS/uNjy70/DibtPrR+0vHrR8/7Tz0QUIrPz+SenFfsnZ
buXRdlVWkWtatj072y433yk71yE/zyE92TQDloV085oCp4YSl/Yqj+YyF6AE
TDpq/LoaArsa/Lvq/AZbAkc7gqf6w4HM9EAE56QnaKLLf64/eLrLZ2nQf3U0
aHHAd2Eg4NZ49NoN1tIoa2E8YXEqixVlIUREiJG41EUwxlL8CW46FvI0dTpW
hUGUEsBKCJKFiDg6iSCAQxP4ebC8CBKSS1aIqCcrrClJFcVdY2AQrEDm3mLZ
7Vu5F1tZV8ell0dlp9uc/jrfLL63V3a6ykEEhny+Xf7guPHhCVhK/cVR3ZP7
XS8fdz27W//iXs3zu9WvHtTBEerpnUo4vrgPXVb1+KIcvgVNPrxde3FQc7pd
nZHvlJBmnpJumZJmlpVjW1LiUpBrAwGmutChvti5ux6YeEG1V3u2V3t31QX0
t4Z0Nwb0N3MaCgQzOxQ10RMCQxyUM9zuC3wmu/wWBoKWhwJWhgO3JiPWJqM3
phLWJpJXx1KXR9ITgvXFKQh1KbKRsjBTGutrQM3x07RTphhLE5gyJE1xkroU
Q1ZEUAiPo+GxAkQcyImI5MXwIEh816QECBJkggiBH41AhHpo3l4tO9/IPd8v
BD73TmrAUi63ywERkDld43QcmNLVfu2944Ynd9ofXra9eNT96kk38Hn1EKrx
9ePGH583vX5SD2Tgnuf3auDk5f3qJ5cV0IBPLuquDutub9ekZNulZFqnsa3T
2ZapbBjodiWFdtVlkITtW6rc+1oCoSDatdf6wI4w0BY62Bo80hE20R0x2Rs1
3RsxNxANKgJKIKGxrqDx7kBwm4WhMOivlZGw1YmY1RusWxNJ27PZmzNFGVG2
IjiEnABGR4pqqkC0lONKdZNIsGc4KPCbSvAwJfkVaNdAIdBTkjSquABNEE+g
oDFQRDQay3OdwMtDw6JBYMJkDO46IjXM6HKr6u5hxbM7dY/O6x6eNd49qj9a
L9lfzjvdLLqzX3G5V36xUwV33j9tfnje8uS88flV45M7tc8f1H//tP3jm/63
rzpfP2358XknfPvkbg3cD6BAQsAH+g7YwsjLyHUuKPMqq/QpLHbJLXSorvOu
rnKpq3RuqnVvqfeC/bq9wa+7JaizKWAcdoHWYGiric6Qv/iAfm6OxC+Msv5S
0Y3e0Mm+sNn+sPmBsJWxqFvjsSvjcZBJ1mYyj25VjbQkylERomiEIpXLUokY
biVcF687W+my1uTdn2lTG8ssCNJKcFV00CArUhAiaIQwlp+Ox5KRKCI/WoBA
IqKxeCSSjEZC64lQyVTMdTIfoirH8+lZ072DsvOd4svDygcXbRdH9dAXwORy
vwoUdfegBvrrAWxbxw1Pz+q+u9v86mHzq0ctb192f/hx4MXjlqcPGr9/3vPj
y74XT9qfPWx6+aDhu4f1D07Lnl7WPzisvdyqZGe5FJX4NTSGl1d61TYG1DZ4
19a4NdS5tzb5QjyGKNgGVtwUPNgeNtjiP9LsO97uN94WAIhmB+OmB6Pnx2Jv
jsbODUfDcX4EFBVyczB8cTB0dTRmfTIB4Ows5m8tlOwuVPvZyUphEG661FqW
0Wp78MP51A+7+a8Xk3/aYr+9lfpqPv7JZOTVcNhBZ2BDnK6PvoAGg1uSgqQT
cCQkiozCElAoMhYrQCDAkYTBgEcReRFStGvQs09OAEg58Ll72fb00dC983YA
9eB2890TjqieXbQ+v2rnTKir5u8etL5/0fn+VdfPrwffvuz74UXvy8cd3z3t
e/184MWznsf3m8GlwbRhtD27XQ9s7+xVZeY45xa41jeGVNf61jX7V9W6lVc4
dnYEdXeFtLf4tzZw0mBHo39HnTeE4ckOn6lO3xud/lM9ofPDcQsT8bMj0Tf6
w8CcZ4cibg5HgHLAnzduxG5PJUJaO1othji3f6uysTBQloQINhOcq/a+mIh5
vZ76837ur6dFf7td9Oft/N8PM77sJb5ZCH066vFgyH230bYpVjXCQshIiSgt
iIK5RsPiiPxIjn6weAqOQMXjARdQQiEQruaiMKRgKL940Hr/qgNi3sVxy6PL
nmf3e57d7Xxxt+PpBYynru8fd75+0P72WffH77vfPGt5B2Qetr150Qsz/bsn
A6+fD716MfTqWQ88CDjPveOKl3caH5zU3juqTmObZuZYVlR7VNV61DZ4QpVV
ujQ2efd0h7TBxlTv3trg0dnsPdwVONruNdziPNHpMT8YACjmhiOXJuKWp1g3
x2Om+kPnByNAObcmIldvRKxPxEBOg4Vo/xZnIVqbynNliujREX0ZRifdPq+W
kv92Vfnvp43//bz5Xw+q/vfz+v/1pOrf9wr/cTvjj6OE33ZiHg87rVXpt7IU
4l3EDOUwslS0MBEPjYbnRVLQOE6joTEkAhGNRBHQPBQkoqUi5NkFKKTp8VXH
0/t9T676Hpx3Pb/b++7Z6Lunw9/d6/ruftv7F70/vxoEPm+ft7570fb+Zd9P
3w99/HEYOuvd9zfe/Tjz7vXU21djT+80Pr2sBQuC6f/wrPrOflleoVV2nnl+
kXVJuUNNg3tFtUtzW2BLS0Bzk3dXh/9gf8jIQOhQT9BQl994p9dom/PCiP/s
oO/N4ZDFiajFiZhb06zFG3Fzo1Frkwnr0wlbc6zlcZhZCbvLuYdb5YdblQe3
yiszHGWwiHAzkYNWz59uxf7rqvy/Hjf860nDf142//eLxv9+Uf+/X9T+97OK
/zzI/vtp/G/boT8teF11Go5nyRQHi7vqYjXE0FIULA2DIvEjCXz8WD4+AgYL
N/BsLAaF40HYGUnf3W9+/aDzyZ3WBxetT+72PL3T/eS8/eVV1/tnIz8+7nn3
vOfT9wOfAMjr/m98Wt6+4LTYl/ejX36a/PB25uOHpS8/rfz84zRHZg+bXtyr
enReAhnyzkFpfql1dr5Zdb1bRaVjUZltYYltfZMv8Glq9B4djoEaG4ycHImZ
HYsa7/GZGfBZGAtYHA9cnghbnYxenoxZnoQui12dTdm7lbW9mLZ0I3ptLul0
r3rjVvnWZt3ebsvN8WJdWR7GdURRkN55t/fHtbh/3in596O6Px/W/PGg6r+e
1P7jQel/npT9vy9L/tej7H+fJ/3rOPb3jaAn/SbzeVL10aKx9lQLFYKyMF4Y
zydGIYkLUPAoPiwaw4GDxcMJDY8h8SKGmlg/3Ot79aDt/u2ay0O49M3fP+5+
86T7xwdd311xxPP+Vc+XN6OffxgEPm+fN3//pOXjDwOf3gz9+evCxw/zv37Z
+OXjrU9vZz+86ofu++Fh3Ys7FRAUgU9tk1d1g0dji291jUthqQ3op6HZp6s7
pLcnbHI8cXI8eag/amY8fmY0cn40fHEsZGk8eG064tZkxPZ8AvBZn00GPpsL
acfreTtL6etzCSszyTublYd7LWcnfecnQwUZPkJIhBoV0Zpsc7vT89Nq9H9d
lfzzfvk/H1b9cVX69ytgVfrPhwX/epj9X1fp/zhl/bkb8W7a5emA8Va5wkCy
eFGAsC+TpCPGL0PmkxEkSdCoFDwGj8WRSBR+fhS0GNg1uFCML/P5Rf+909rD
zdzjzUKY7JCKoUHuHVWCNb161AYD682LnjfPO3982gwEPnzX+flNH4z4j+9G
P3+c++3X1d+/rv785sbP3/d/+qHr3bPGv/g8Pq+tavRv7gobHIlvbfOvrnPv
6g2rqfcAPqMjcVMTKVMTaTOTaTcnU+BZr0wnLIxH7y2m7i0mb8zGbMzEQX9t
3Uxbm0lan0vaXUjbnk/amGHdmkrYvlV8vNvw4Hb/7EhBSbqfLAWhIYDoTLW6
NxDw02LkP85yfjvJhvrlMO23U/Z/HhT+ccn+20Xav85T/tiL+rIS+HrMHvRz
0qg1kyvTGS+Z4yrkq0PQl8BLkzGwcYBRE8Gu8QSghALTRuEgPeopC2wv1y3P
shemE083C0428s+2CneWM4628u+eVz990vLsaeujh42vnra9fdHxw5OmNy+a
f/qh88uHwQ8/9r19M/Tll+k/vs59/Tjx6W3fr+/7gM+zi7KHZ5VPLutLa33K
ar3bu0Kbm/1raz0rqt0KCq3aOwKGBqPHhlljw4nTY8mL02nAZ3s5C3RysMoG
PuAzgGL5RvzKZOLWbMr+Ivtgmb1zM3V9On5nMeN4o/TeUfPuQmldno+3jQaN
B2Etzz+UY39/IPiXtcQ/jrJ+Pcz8/STz62Ha70epv5+m/u0i4887mb8fJ3ze
Cv9w0/f7Cefvxu3vdRsfNuguFKqPpqrWh2u46zJAQgwsiobDk7/BwaHQYEQY
PjSWn4dOvlZRFDTanzA2ELG1yIZrtLmQsTqXur2efXFe9fBJy8ll+eNnLY8e
Nz24U/PuZfuPL5veftfy5UP/pw8DHz8MfP488uXTyNfPoz+/6fzwqvWnly3f
3eMsYncOy3JLXYqrPFpaguprfQry7LOzLRNYmnW1bjDfuztCh/rjgM/qAnsD
vGU6fnMpBZbl7cWknaXk3eWMpQnW0njizkI2RNaDW7nQa7sr7JOt/PvHVY+O
a8caQ2K9NVTE8UL8iCATwYUqj/sjUT+tpX3ezfztJPefd4r+cSfv99N04POP
Ozl/v8j6x+203w8TPtwKfTPv/3be782M5/Mxp/M2i51K48Fk3WhbGRU6UpKK
F6cJ/s8Iw3AQ4ZBY2EGwfIjoMMvRvsSmarfxvvCpoeix/qiJ4eilhbTzy5rL
hw37lxX3XrQdn1ec3658813X21etv34c+NuXkV9+BkS9Xz4Pfvw48OXz0Me3
Xb+87fz4svnDsybgc7pdGMHSY+fb5Rc6sdMtYqK0woIVgwNkCvMs+7rDOloD
JofjV2ZSYYhPDQX3trpNDATurmZsL6eCdHeW2WvTaesz7M05SDj50PUnWwX3
Tiphob5/WHy+kd9e6GSvS5UTxZN4ECwHqe1W/6vB0DeLST+uJPy0mfSvu4X/
vMqHmQ715wX77+cZfxwm/+1b/b7D+nk55N2s7/s5v2ejLscNFpM5xjHWkpri
GBECCuIiHonG8iGBD5yAfmD7QF1HBHgZdTRHl+bbtjf4dDT61FW6dHUEzs+l
7x6WL27nrJ+VHN2vvbWbu7mT8+Prrl/e9fzyruvrz71fP/d/etf++eeeXz4N
/PJp8OvP/V/fd7+6V/78DudlkO2l9OBYHd9QVTtHcX8/ZVaMbpCPtL+HaHyE
KiTn5hr3/lafG91+nTVWLVXm7XX2vR1eowNB6yvp6yuZG8vZu8v5x2slB6sF
t/fK7sKGeFQBlvjsvArM7eRWZk2GjZYkr4wICdbJaGvR9XqvVzOxn9dTPq4n
/rqb+sdRxm+HSX+epf55mvyv87Q/Dlhv5vy+u+H9YSHk42Lwp4XgHyY8Ac5F
p81GpUlvsl6AobAijZ+BxZCQmL/44PhRkBUhMUJWRHIhrEyVaqpCE1kGmenG
bY0+A92hwwPR4+NJwxOJ3Tfi5g+KFw9Khufi5xcTnz6s/fFZzde3Le9/qP/0
c9uXD+2/fez5+mnw779N/OO38S/vYYctfXBWuLeasr6Y4BGobmLNMDAUcLSX
iovSiw1VD/NTcLUVSI/TKUgzLE03qMkxai0zbyw2qSkyKyswKyuxHhmJam70
mp9K3VopON2pON0pO98vB0TnB6WQzF/ea/zxUePSaEwhy0JHCsvZJREIXwPa
QWfksxux389GPx4Nejji92mT9XWX9WU75s/j5DdLIXsNxrNZikv5apvlettV
hkcNNsfNzqvVVjdymR0JKhWhSl56NDnKdQF+vr/4YHghCCFhLxMiUyFI43iv
62lIpKQ4+gUopaealpc5dXWGjoywhkdTekYTe6dThm/lLJ7U9EzGLyyl7Gwk
3z1Kf/+i8sdXlZ/eN31+2/jlXduvn4f+/ecM1Of3Pa+f1Dy7V3a6l3mwmW7t
oGhkLqGhQTUyFHZ1lAnyUwrwlAvxkYsJkksMV2JHabGjNAqTNCsymewEzWy2
cVGRU2IiM5NtUlZq39Los7NedLJXfrZbCnyg7p1Vnx+UXB2Vt1e5x3trG8rT
KLzXMQiEpRxxuT5qucp1jK3bG6faFiaxWWX8cTn883LoT4vhy6WmWXYothVX
Y5DQeLraSLp2rptwoi0j0lLEz5AcYUFMchELNhNVE+Jm4Pj/Lx84gQIJCZJI
OH5+OSlaaKhxcIhmSqpVWoZVaoZVaY13Q0d4bVd461hCzxy7fzGvsiN4aj5x
fSXhdDfhw6uKD69rfv/c8fVD008/NPz+6/Aff9z4/evEl4+Db17VP39QfHVa
cLafo6oppKxOU9ek6+kxHO1k/LyVfT3kI4NUWZFqCaEqEV5y4W7S8f4y6dGq
Ib4SsZFaIcFqvj7yKcn67AxmQqJWY5PXwXbJzlouULp9WPXgTsv+duH2ak5R
upm/jbypsoickACRC6EhyO2rQ2KZEbritLsTmG3Rqs3BAlcdVp+Xgh/2OJd7
CzmIINi2vAvFhkPJ6kXu9AQbITt5Lhl+hBQfwlefqzxCJclN1kweJ4zjoWLR
FByOhIO2woBRQ3/BXgYWJCyIjYywCg03iIw2Do02iEu2yC31aOyNre2OahlN
6JhMT6v0SCy0bekKmJuL3t+IffOi4vPb5s/vWn750PzuTcNPP3d/+XX0p3d9
P7xqfnyVd3GYcriZsrmcoKhK09ARVdVkaOky3N3VXJxkHWzEAVFijG6wt6yv
o4S3nXCUj0ywu5iLDc3VUdTFQcTfWyYpTr2szCol3SA5Tf9gr2xvs+jyvGl/
p+Le3Y7N9cLF2VR2oqGFloC6OFmcRiLyITSE+ZjCCE95RF2IBpOC0MUiyj3w
25U6/9iLPWszTzZHZNjyT7Dl7/a71PrQdHgRtiKIIF2eMEO+En/RtVqzjQbb
ynAVJ22CJOm6AB5JI5NwGCySj5+flw+PRqH5eMGCaGSUt7dBQJBOSKRhQKge
HFOznYvrg7MqPPNrfSq7wtLKXRMKbPIq7No7vbbXE5/eK/z0tvnT+5ZPHzt+
+dL306e+dx96fnjd8vpZ9dPL7Dv7iZtL0WsLMZq6YvpGMoZmCvpGEmZWUsam
dEdHGT8fFTdncXtrQXc7MXdrRriPvIcDw8ddzsFW1N1JMtBbJiNNv6jILDBE
BvbZrY28nY28m3PpzU0+a2vFExPJ8zPpnY0h6tIoKRqaQcHxIxDuRmKDBe4d
8bpPJ9OHsxwaItVmcjUe9Nv9+zjxrM00056rM0byfr/Dr5vRb+eid+rtF8tt
hjJ19ltd3i3HvpnzPWmzbohTdVBHixAQBDQfTYAC2wUKbBkJuxiaiEXB0kHE
X/f3Nw4ON4qOt4pmWUTFm0clWGSWemaWe6QVO2VWuaVXuGVVu9d1BlbUOSwu
se5eFH182/b7176vvwx8/NT//qfen3/u//6H1kf3ix+eZdzZS95fT5oZC1LX
EuXwMZUFPnbOKqbWEtb20p7eKva2oo52Ym6OUj6uMqF+yj4eMloaKGtrMU93
eXcXiago1eh4VTdP+sQ4C3LR3Fh4ca5poJ9EYrJRa3v4ynxOfrqtqiRKSZRK
hSeAQLCcZY77Qu/0+py1O62UGk2kKwCN1zNe/3WWfNZp3hJKGk+Rut9p9Xrc
7bLb4qDVaKvO6Ljd+vW078fFoDdTbsetVuVhiiZyfAIoBOynsFYgkUgMBoNC
8YN+qEQcFAaFMDaW8PTVdHRV9AvQCo80yshxrWwKZ5e5JxTYsas80is80iqc
S5q9qts9+0ZDtrbZ33/X+PaHJmioH163vnrV/PJl0+PHNY8eVNy/nX//tGB/
LX12LFLXQFpLVwL4OLrrWDoo6ZuKWDvLewdoOrnIWZjR7axEwbRjIpmW5nQV
NZSVnYy1rbiTs5S7l4y3v5yDk0hcjFZTpVNptlGwj1hygr6ru2RMrGF3S0RM
gLaRmrAoBU3Bo4FPYaDq94vJv2wkf9mI+37G78NS8C8bEW9u+v26G/dg2Hky
Q3q9VOP9jN+/D1n/PEv4z1Xqfy4y/p/z9D+3Iz/Muj/utVgrZ+b5yetL8ZOR
CCwSqCDRaDTftxsKyUfCoUWEYPNAaOsJ+/rpBgToRkYax7Ms2HkuxTWBFS1h
+fUBiUUOCYWOySVO6RUOGaWW5Y0uM0uJD5/WvHzV+N3zhnc/tL9+1fTyef39
u6UP75Y9uVd+eZS7vZK2OBWvqSOpqCIoryJgaqdiYCGjbyFuaiNtai1maStp
ai5saSmmq0syNBQyNBLWMRA0sZKEHtTQIekyacBKT1/QmEnzcpUJ8pbz95BO
S7a0shGzt5dJYVl52SuZa0uT+bmIGCQWgchylX0yGvXDXNSX7eTfD9K+7ia+
Xwn5eCvs74dpD4bct2uNzjus3y8EAJP/XGb/fw+LgA+03i9Lvq8GbU8bDCYy
NaKshZTp3PCAGH4kHw8vBoUG/fDDjorkw+MwVAoJi72upSmSwHKMjjSGCxod
yWQlWaRkOUSnmUelmrFybMMzLD2iNMMyDGNzTbMq7FsHg29upJ7fL726Kn38
sPzpo7LH9wru3c66PGbfPc092krbWEi6NZMgp8BQUhNV1ZVQ15dQ0hE2sVOx
c1U3spTUNxbR0qVpaVOsbWRV1QhqmlQDE1FLezkrewVNPSE1LbqJhZK6prCG
Bk1fT8jWSsLZXjo4UEdHl2ZtJe/tou1opmymKUfHICloDPAJN6BedoU+Hw//
tM76+0nmrwfJ71fCvmzH/es0+8mYN/C52+/0fjHo162Yr9tJf55k/v0o6fft
qA+znvfazSEUtUbLe+lRJYnXKGheTjiECI3FcVawby6Nw6IFKFTYxHS0xWtr
WKXF/mXFPnU1oe0drKbO+JrWiNrO6IqOyMru6Or+uLLOkJr+yNbx+I6JmKG5
mMWt1J2j7N2D9L391MODlJ3N+PWVuFuLcTenY26MhI0PhiooSotL0dV15eXU
xWQBlB6QkdU3kVbRoItKIjV1BM2tZLT16DLyaHUdqqWdvLahsKa+sIo6Q1VD
VE1TDOxLU1fExkHNzl7R3kFJVZ2uryejqyqhJsOAXUmKSpEUFCJdQ1hJXD9o
Dvm0nPbreuIf+ymfNmN+mA/+up0A50/HfTarmbs1Rm9mgz6tRHzdjP/bXvLX
9RiIRt8Nux5UMwcTFQp8pew1qGJEXhw3F5qHD5IzzHc0L+f1DRAS3HAYPImI
lRAjBQRYJCe5hIcbZ2d7dvemt/UmtQ4mdU1kdE5l9N7M6VvOH98smdoum9sr
X9gvubmbu35SuH+nbO0oe/0oc+2QPXeLNTod1dLq3dEeMD4eOznJIpPJSDS/
oIgAQ0pQWJomJEFiiOEUVIRlFQRl5MnGpnKmFjIm5tL6hqL6xmIauoIa+kJK
GjQpWaKCMkNRha6jL6OoJqSoJqilJ6qsKqCsIqIgx5CgU0QpJBE8jlNkCpkb
oUVFTBW4/zid+GEm7Otm7M9rkc8nvT6tx/62n3o16LFda7VczHw+5vtpJebX
jfi/byV+Wgr7YdLnXqfdfLZGU5Q8y17YQAYrjOfD8XJDMoTkw3khGk/G8mNg
xINX8/Hwk4h4hiBeU0OMyRSHi2VtI+fioRbBMo9OtQ5NMYvKsQ3Lsg5hW6aU
exS0BNcNxEFoHLyZMryYPLSYcGM9vX8e7gmp7vFq7A9mF9pExOuU1nj0DMcL
UOkYLJ4oQJKUExeWFmJICQiLUWQUGPKKIlKyVF19KXMrBQsLeaaxuKGZpKml
vIGxpLo2A1KTkqqQgZGClq6Utq6EqjpDBSgp08TEyIJUHHgOkR8phMVKUKmw
TqIQCGEeRHmo4XmL74epkPdz/s9GnS+7rP/Yh10+Y7XWerbEZiRD/6zF6e9b
Kb+vJwCftzO+93pttquY3bEy+T5iASY0VWF+EQI/EckHa8VfywWFQETz8fNc
5wa75udFEnB4IQG8ojxDXVPE0lbV2l7V3k3D0VvTK4zpF2PhE2Pun2DtE2fh
G2/pn2wdkGSWVuFT0RVR0x9VNxxV1R8GldvkWdEVUNriG5dlGZFsFhhr4Bel
S6XQMWgCiUxliAuLyjJEZAQJAhhpOVFZBVERCbKENFlFja6tK2pmKW9pqwyl
rS8GDWVgLKulJ25upaauJa6lIw58NLXFQDwSEjQhQTKMdDKK89YViIcC2udC
wAoWaa2wWGD7qNP12YDj2xmf3Rqd3UbThTLzAC2EnTTCTR4xl6P3772s39cT
30wFPBtyOmowms1Rqw8Vj7UhO+sQ1UQxQjj+v/SDvM6DBIvmYOH7q5B8KCwa
A4NMWkJQWU1YU0/c1FrJxlXT0kXV1FnZ2lPTPczUK9LCxlvbOcTIN8EGQMXn
u0dk2iaXuSdVuKTVeWY1escVWhe3BaSXO8eB2FIt3YN1XAI0KWQhPI6Cx5HJ
VIq0gqSUkqigOJkuTpGANpFjSMvTJWQEpKRJahoMpomMhY2KLlNClymlbygL
FgTmA9kATkBLymp0aElJaSExUboghUwjkgERlpsPzYNEXeOCiGihTO1LMN4s
Nrposfx5IfBvu3G7DWb+6gglJEKLggg24Nuotn8zE/l8xOdej9N5m9VqifZY
qlJjuDTbTdxVj6pIR1ExPBhuLhQ3L8gGipOfIUHzcvPwXOfh4eG8nYFHS0oK
6jFlTK0VTGzlrVzVrN3UHXwNnPwN7bz1gJK1l5ZzkLF3jJV/vIV/grkvy9gn
3tA7gemVoMMqtk0pc8iqdssodUoucIxl2wXHm0em2KPQBCyODHxwBDxdjGNB
orJCVBGSuLwIyElMhiGvLCopQ5GQJMAaYmWnpmcoLa9M1dCWUFLl+I+2gZSm
npS8ihCUpCxNWk5YXIIBDwcWCsVpBG7gw82HQKgyMG2xRjMZOmsl2k9HnP+2
G/+f24UT2WYZzuIVEToTJS7bjR4rpSZz2cp7NUa3W63Xy/RGU1WaoxXSXCU9
DOjKYnjYLGDVQvHy/QUHpjwn/6D4gQ8vLy+cEPBYKRm6tYO2tYuarbuaa4C+
W4ixU4CBo7++V4Q58LH00LD307P11XIPZ3pEMb1imSFsm9hCl4RiJ3a1W2lb
YGlzQHy2FfAJZpl4Buu7+OngyDQMgYzFgech6eICdEmqqLyIgDhNTFZMQIRK
EyGCF3H4SBPlFKkw1EAqUDC85JUEVbXEtAxllbUkpBTpMkoikvJ0hgRVVEKQ
JkDCIvnhQhP4UOJUIfgFfNeuCyER1WF6qyVW25Wm48niC7lKx02Wh/X2Q4ka
lQEypf4yGQ6UNGv+hQKtyw6bqy677SpDiD1VobIsBwkbDQEpKueDCqi/Wulb
ROTn4OH7JiGAg4I0jcdjBel4XRM5cwclV389jyCmg5+OjY+mY6Ced7S5a6ih
lZeaayjTMVjHN948Ots5Msc5Ot85vSagsCWisDGooM43p8obklJQorFLoJqN
i4Kbtw4/gYyn0FBoLJFMkJAVE5cVFpURoUsIUYWpeAoWWkxZXQIaB9QCVgOy
ATKyCgKKyqIKKqKSslRFDTEFTQkpJWFhaSpn9kmTOZSEBfBofjQPD0AXodAo
aALMYnDpcDOx5XLXoyYnkNBGmfZuteF2mf5QrHSll1CiBX++O20q3+i82/np
qMedTtv1CsPeJOXCAOlIW0mmDEGMhCTj0N+YIDn5B43hSIiPDzqLcxcSEjWS
SMIKCKKNLOQdvDS9Ag3cA3U9w409Igy9ooxBMD4xpnDiHW3iE2fmFWMUnGId
lukQW+CeWhmQVOKZXuadXuwObRWVZu0Zqe3kr+rup+sTaIinCKLwJBhhQgy6
lIy4tJy4iLiQmCSDIUoVEadCv8grCn/L2HR5ZRFJWUExCbKUDA18RklNAhAx
JAlishQJeUEoSQWako6IsraYhJSAgACOiEMKkkhUAgXkDxedF4GQJyPqWeYb
dfYvxrz+vpv4esLrrNFys9TkRqZWb6LCQrHhTr3lfqPZcbPZTp3xRKZaZagE
y1HYy1hUS5IgLoAloDmiAcEAHzSnv0A5/H9tGRw4BAyRiBQTJxgYibh6qzl7
qjh6KnuF6/rHGwWwjKHgxDfOKCjJkkMpxiggwTw0zTYy0zGC7RSe5hCUYOEa
qOUaouMepuMXbeAZpuMBCvRnogmU63woCpUmJiEuRKcK0SlUAQKdAZML2oou
pyAqpyAMGVtSWgDGmaiEgIgYCYomhINvpeVpYnLgVGRFTREldWEdphTTUtbI
QlZGnsZg4ClESHFoLBr31xXmu44ACRnJYVoTmOvVlo+HPB722k+lyzb4YRuC
SAPJUjM5yjfY8otFmitl+pN5WjXh4ixHqrs+wVJNQFWCKE4jYPh5+Hi5kf/H
fIA5Fxc3PDQ3N/e3LQNJJaGlpYjmFpIhYQZObkq2LjLuAWo+EdphiUbBCfrh
KSaBcUx7PxWA4Bqm6xnFBEogJ/dwI+dgfSc/TVtPFZdgXd9IQ49Q7YBo45A4
G79QM+DDj8HjCSQBzo1CpuBpgiSqAE5YhEoRQIOKqIJ4EVEBcUkaXZgIR5CQ
nJKwrDxDTIoiIUuSVaWpaYsqqNKU1YV0DES1mYJGFuIKSmA6/GJ0CuzaKM78
5eQ3eEoo3uswyAwk+FqSzU473d/MBnxei/q8GfVqxvei136jhjlboLZYoj+c
rVkVIR3vSHPVxZkp4YzB8SSogkQkHgWPxvNtmnMmF3QWOM9fLcbhAymXjJWW
IFhZSoeHGwYE6QEib1/1uGSLtByrrGK72FTDuHQzr1BttyBtt1DdwAQraDQI
RYEJNi4hEHVMAmNNfSKYEck2IXGWwbFWkUmOXsEmKEihRAr4D41Gw+PxNBpV
UIgCBgKDQESMAnAEGRQRmPkSDFExmrQsgyFGlFVkKKuKGxgpGZmrGJgrmlmr
Wtio2TtqWdoouHtrBgYZWVoqKMnT5KUZ8IygEXBILIQTeF4ofjSShwtUxJTk
Hy2we73A+rqbDKvW2+XQg1bLhQrmdIlhH1unIEgq1JLsoIWy0aAYKVNVJIjC
FCSGB8HHhcDwcmIPZEIwHPBk2Cz+AoWG4YVBCpBxYgy8ni49MNAgNt4qNNwI
QKVm2JVUuCexTVhpxv7h6p5BGr4RTM9QPfAlvzjLCLZLXI5nZLpjaIJ1UJxZ
eJJ1VLK9X5ihdxDTzVfXyVMTQ6SicWQeXhQOR4BfRyDgAJEAjQgOA2oRoOGJ
JBR8CyVEJ0nADiIKKqKCw6iqQ5CWgrbS0BZT1xYxMJTS1hOG/RSyvZWFgrwU
QZSGxaN4STgsDVYMHIlMpMCEuX6Nm5/7OhqBMJZBTlX7PZuJez4ZtNdks1Rp
NpxvWhisGGEr7KJPNlfGmqiQTVVo6uLgPBgSkgv4YPi4wfNBQsAHlIPD4f56
lex/9IPDgAUJkFFyskQvb92QUNOIGHNotDiWRW6Be2K6TWq2c2isSXC0SXi8
RVCsqUeIbniSbWiyLRw9Qw2cfTUdvNTCE2xiUxx8Q5mAyD/U0M5FEfhgCVTI
FLw8KH6YydwQt3jAiKSkhaGhwIgEheBIBQnRBAlQouJUujBeSkZQUVkMAo+E
DEVBmQYbh46emKWlnIWltKuLur83U14KTycj6VQi5/1xzqOjSFgy73UU9zV+
rmu8fNe5MKAiWXRNrFFPhkldtHq+v0KUnbidBlFXBq0rR9KRoerI0RUYOEE0
F4EHIURAi1DwMN8J/LyQHP7aSYEM/7cbFxcX+DZIiLPIUwmiYkQ3DyMvX6Zf
kKGto6Knr7ZfkF5wpHFcqn1QlDE899BYC68gPc8Afb8IU0g4AVHmPmHGzt7q
rr6anoG6kQk2QVGm8WkO+aWBccl2kH+ADxoyEIkmICAIVwQ6WlBQQFRMiCFM
gZ6SlGIAHOg4KhVLoWDodIKICBn0o6AkqqAkoqQqos+UNjGTt7VV8vbRS0py
TEl0TI53UpCEOMcjRCFScDi+69z81/mQ3Bw41xHAho+biwf+QXMjBPgRygyk
CoNHhcGnLkrQlKApiZElwfEoeAHOB1p4oegEnDiVKEYhUNC8FAySgoc9Agtp
GYYXOD/Pt9u3oMh50YOzpdIFDAzVnVyZNg4akPkdXbVdvLUCI028QvXs3RXt
3ZXtXVWs7JXsXdShbBxVnNy1zO3kLOxgsojD0c5FOTTGCigBRjjyY4nQXxQQ
BUMcjcJz3kriDE0eYRFBYRHoLyLYNegHjkIgJDpBXJSkqCgqKydkaKympSOn
pS0JnWViImnvoOTpqREeYhgVbsKKtmVqi1Jx3Fh+Hgw/x6JRPGg0L4aHC/k/
fK7z88Ag4kNyITjIKPwIMg+ChuISQPOQkNw43uuwR2B5rpPR/KAcaRpenk6U
oaGUxSlyIhQ6Gct5TH4kTEZezrRHXb9+Hfj89YkFLFAlEWTlRYzNVKzt1W0c
tHwCzH2CjaBfoK3C4kxdvFQ5r2LZcX5q76Th6qGnZ8hZva0dFK0c5O2clBxd
VX0D9f1CmI7uKsbW4kgcCQk9JsBAowjc15EECIVYPIFAEBKiMYRp0jLisnIS
yipyykqyygqSRkxVpp68mamKsYmylbWWnb2eqwszJMQiNsY2NNQ4LtoiMtwQ
KiHGxsVOVYjMh+Xn5gWz4LrOc52fm4vv+jVeOF5D8GLQRD5e9PXrPNeuXSOh
r3mYy8GckhfiFqHwCBH4YOzRiRgxAbykEEFJjKghjjNSJDnoMuz1xAyVGJyP
2WM5n0zAYfAwGSE4c8TDjwTl4DBYsCAYvnpMBVtHTU8/pl+gmZOrpoefrn+o
QXicSXickW+QlrO7qqmVLPwH4GNqIWNmKWtqIWVqLWVtL+vmpmxpzrAwE3K0
l3J0UoSoAHz4UJx3kHi4MTzcsOJRKWRBuChEIpHBEJKUEpWSFpWTF5eWpivI
MXQ0ZAx0pQyZMvp6kuaWKnYOOr4+5qFh5kFBzPBwU1BOoL8WVLC/tpeblpw0
FcmL4CQVbvj7sdBfYBKAiOsa6AcJKvrG5zoFc6080SEnWDPITsrBUFRHnipC
uS4tCGohaMmSTdUEvM3Fo11kEr3kfUwEbbXoysJYATQf2Bp4PsQGIoRb2N35
eCkEjoBgRQXbNDRRsbJRdXBWtXdQdHFVgSnvH6Th7iXn4i7t6a/iF6wDInHz
1A4LNw8OMfHx0XZzkffzUQkP0YgKUo0OUIkL0wz0kre3FLO1FOfDEHj4sbCl
Ivlx/Hzw+FQQ0jUEDxaPowsLCTEERMRpSiqSikoiutocOBZmCk5Oms7OGl6+
Rv7BNnAVfPyN/AOYQYFGQf760F+RocxAf00fT00rc1U8mguaC5yZgoXlG4vm
xUJ/cV1DAh9QFBRQQl1DFESZTVR51CYbZIepBlgxHA2oVjoCdgZ0R0N6gJVI
krtEcZhCWZR8pq9UgBlDTwIlgueloPg5n9IEFUF44EOTMBg6lUQk4IhEPARF
dXVppoFMgL9hdIRpTrZjXY1fe2tYfp5TSqpVUalPZo4zK8EykWWZkGiVGG+W
k2ZdkWdbW2jZVmYzUOc03uLdVe2WwzJICNEM8ZAH/+FB4TgfwcZwNA+2AAUu
BH4kSKdCPlTTkjE21TAxVbO0ULe10XB11nV21rK3V3Fw0fL2NzO3hcth6uqh
FRhkHBJsEuSvGxKoDxJyclQ2M1aEaYuFacODwUF84+W40bf5xcfHi4Hfxf0N
Eaz2cW6K+8MxszX2ffnMapZ6TqhCvKd0nKdsRqBSVqBsSYhYa4p8d7pSU4JC
rr+ssxZJiY4SJqKhDSmczx/yk5AoBhEvJSxAIcBVhS7gIhExBnry8Kf6eunE
x5rl59onJRgmxpsUFXhmZjmlZ9hXlgf09iTW14XERajX5pmONDqON9jMtDre
aHLoKbeoYOtnxKgVpJrEB6vgaXSI0FA4EhWHJ6IwaBKJBBGRM7NEYJUgqmmK
aetJa+lK6RlIG5sqmhjL6+qI21irO7vre/qa2Llo2jtrQo+7e+l5eul4umn4
++g52ysbG0qbW2hjMXwgecBCwFLQ/HjAAsoB/4EsAVeB+5s5QaJ21iMstvkt
N9vN1xhNlum3JMtVRkrXxis3Jii1pSiNFWhMl2rerNAezlRoT1SKt6erC19X
EMEzSEiYaIJYtDAeKUlBGyhLCxI41g3DkZeXW0z8W1STwCsokXX1aGoaGEND
IVdXpZBQnZra0JKywJQU+/gYw6pCq6V+p6VOk6VW8/5i3bZ8vYY8ZlywSFay
enWJfXiALJYqiCSC5QjjyAIkASpDhC4qzoD9VFpGBBKOgZGCqaWyho6onBJF
XpGqriGmpkpn0HllpAkKSgKBIfaObgbO7kwrOw1re01ff3MXF224ajbWGrLS
VC0tJW4eBFjZX5oEJtc55swDsgHngYCH5L0G38vQEJGOIkPFphutNvudltut
ppPF6qN5asM5KuMFaguVOtstJtuN+odtRstl6sMZitWRCvYaeGkqlywdB14t
TcPJ0DDSFB5HY3VxGunbu4cYII8nwhPCgxfJyQvqMiXMreSUVXCaWsQoWKxg
0DvIS0ojDHTRRWy9qWaDgxHLjW6rkTKDyVYXdoxcbpp6V5tHVpqetwfj2+wS
owmLUcGOxRjCElB0eRVZZTVZfSMVprE800TK2kGZaSypoS4qwsCIi2DkZClw
jsYghBg4GTm6kYm6iZkm7PWwdOjoyhOJPJKSguJidCSSsznCnwomzM0JvNBN
vFyI68AHPBvGOp4XwVTkTwuQb0vXmSjW3241P+6xOuyyAES77eardbpbzYYn
XeanXWaHLYb3h23POs2XijV7UtRCzGlqDC5FEayWHENXlmagSFNk8JprS0nR
iUQMkgpBko8fghxVgCgsTFJVFtHVlzQylVZTIxvoC1maiSgo8AAoGZlrGqrX
PO0xdZnSW0PWY1VaQxXM6kyd/DStonzd8gqzoiKLiHAFKl1UgCFKERKmMoTI
dLKQuKColLC0oriEHOd9MUlZrJm1nJ6RsKYOXUKMICdFg6lkoC9rZq7GEMbx
8XOBP5LIaFhgUVheAhkDw47z0RMkN8QDDAYD+/X/zW+83DDIvsVCPm7wZHEy
ws9Koi7NYK3L83TE56jH/mrI8c6g3Xmf9e0+y4sB68tBq7sj9o8nnL6bdv9u
2vXZuMPjEfvLToulUsN0N3FrZSzMfQUhlL4sztVEWlsazVQRlhD8lrFRKJhl
MOvhS1FOXAFCvgRSXIJLRRFpYUa3MhfwdJWMgC3VSdjPQzAzTnq4Rn97xHF3
3LO9WDfMg1zA1o2PkystNS8pcQiLUAfxAB9OCdNBP4JigiKSwuq6ykpq4rA4
GBtLGZtJKahQZBUowEdPS05RXkhVTUTfQAG2DBwWSaWQOB8SIOAoFBIcITLB
BOH7P7e/khvw4f/2oigfF/jydSIPwkgZXRyp1ZqiudJoc38q4Ptbkc9nfJ5P
e76c9rw7aH1vyOrZtPOzWZc3twLerwX8tOL/bsHz1bTTD7OuTwZtD5stm+PU
gk2FVOlcejJEMwVkjKuKkTzeSlsa2k2IiIN0RMahiVgMlIK0qIWpuoONkqe7
UmigKjuZ2VTj1FHn1NvkMtrmPNvruD7ivD1ivzfu0lOpmxEtnBYnk8pSjgiT
ycoyi4zSd3GTR+NJJAEhuqgYA54/hcyL5kMTUDQ6kfPmjo64saGkhgas7USG
MEpaiqihytBUZ0hL4dU1JEC6vDzXOG9i4nBAAJYgEIycnIyAAOXbazLQVteA
DzQYHPFoDKzeYM2CKESAjcRgsf1UmdFWi/mDCe+7Yy4vZr3fr4e+mvF6txLw
47zn22Xvn9YCP22Hfj2M+mU3/OdVv0/r/m8XPV5M2D0esNitNyoPFHdW4TaQ
4NMV5/c3pce5KFhrCAAfMQGsMAWWfVip+YlotBCZTMahJESIxgbiHi5KESEa
JflWI91eC2N+e3Oh+zN+W6OOt/rMppq0xxv1GvKVqvM1GitM8zJ1oiPloyLU
3N2kLSwZOAIeiUYJgnakJIlkEswvUIKAAE5SAq+jJaqqQJWSwEiKE4UEeRlC
XExdBlNH0IQpoaRAJ5FQ0DMUCkVMTAw2arjBziguLgpb4//FAjfgBudYJAq2
BioPwsfk/2/RTIOauuIozo5me8l7eRt5eXlJyAshgQAmRDYJS4iIEAQCggEV
iMimoEKnWivouNU6Kri3ohQVtS5YRhRGBEEp7jO1ddpOrdZ9IcSI0n7sxXbm
friff/f8zz3nzqWObUjrb7XeO5b7e5fjyYXyP8+XPO0rfXqx5PH5wjeXFgO1
PO8pet236O2VsvHhinfDS95cLnnZU/DkfM6jM1n325K7189ozMSTGa+0EGFm
JFmTranIYtONVIyOImEOgUA0htCYOEgEY6AGcDiokKNjsVgDFTcTt2VQtU62
7/TiwVMlvUeyu/ZZ9jXrdqxRtX09c3Nj8NbPtVvWGdY2RlSWB1eUhjhLtcUO
VkoF4TgK3EwIiwQCITh6EEFJjD8jTBqhxcM1WKSO1GvIeJMyMY6eY1FZkxXW
JDUYahjigMqM47hMJg2cQuLLB1etlODypv4t/See//n4+HL9/UV+Xnrcq6XO
PHLQ9qDT9vgHx4u+steXK12DtS/6ne7hqndXK9395W97F73uK3ENOoFyAJ+3
g6Wv+oqeX7T/dS7r1+OW+23mq7sS6+eIHLGo3UilsrziJKoomTaxsJZGIY4f
jghpEpOTOM7nMQRGIEIxxKVQbpgaNxnpmQaB3Ybu3Zpy9htbd5tt4HRxd7vt
yI6EjtZZ7TviDm41bW+KnEK0Sr9xbfz+lrytG9MYiqSlJOh0EATxOFyQSBCY
zwYThnBGRfN0KiQmShahwdJTNLNT5aA4pCbKo3RYMCMWcAOAAVISUs3KhRDH
x9tL8IkPJJx6RAJYvH19vIF2gDf7B4BQrhb750dD32+w/HI8/1FX/svexe7h
mtcDlRM3Vo4PVU+O1r0frn4/WDHWX+a6UuoaLPOMVH24UTt5q3bsiuNNf/6L
C7bfTiTfPxw/sjdp82JlRZqk3KIxqzi5MYTdrIxgEAKcV4AvBotkJElCfCUB
hzK4DBNJURjmT2coJFwLzFkxP0exZqXx4HbrgW3mw63WM0fmXeq0n9qTfKkj
G6yT+2fv2xyzc72pfU9m227blw1RMgqnpQSMCAhAW4yI+BzQ02dEqqK0ZDgr
MkWSanmgTs1JigOTBdnSVQa9KETJZ4J4MgqVUjiOiViWkkhEwItA/VHIpSBb
8nhT70iglU4VU19fXqCfAuHNYgXrizWDuzMenit60l347NLCVwNOz4/1k3ca
/r61yjNcPT5QAfQDJss95JwYBXCq/7m9EmzcVxe6Bwpd/QUPT6f9fDjxbJO2
dfmMPAPXkShPUvFt0XhBSmioVIxwp0/9soOn3kbkOD82TGoKJUNpWEHCKJ+D
ifgAUVQYWZirL3WELCmRNS5jVyxl1jeGbmpQHdxoONFqrlswbVM9s3eDoaMl
+avVupbmmFVlUhTlEyTIQEKCBISDSQzCEF54KG2OVcQbiazZIdYkWXICXpSj
zUihbFaFUQ/pQvgxBrlSLsZxLssGsWpcwSAozAWoWYVMShHAjoB+QBoEs8UJ
8JehvAgJpyAGP7om4acO+7OeRYCG53qN61rV+I36iVsrPaN1Y1eWeIaWfrhe
PTZQ7r621HOjavLu8ombdUBFroGFrv4FLy/a/ziVfvdAQudn2uo5aIraJ9tI
JCin5cRR2YkqBSEQTA8A4UcY6MWI/VKNdHmuCayMeE16QmS0Vk2KIFBGKJSf
adVnZyhLCpgt62atrtMc3ZvZ0hTdsTPl2M6k5hrJt5ujj+6YtesLbUtT+LYG
zc7V+iAJqlBKxSgkobCQEAaCAhEIGLK4KC/ebgvLtNC5c+lMi9hZrMubC/aK
uVZ5rBGP1BOsSqRQivQRtNHAADNX0IgcTD4MSoSft/cn+/EJ9Pf2Ai3ArJdk
RCDL50jPNieAS/xlb9n4UKV7pObdaJ37Zr1rdLlndBkg9nGkZuJaFeDzdmjJ
x9t1k/dWeEZrxq463/Q6nnfnPema96DDemdf4qFaZW06XhgfVJzKZhrJLBOR
k6RmUF/I34uGfQwq4XyLujI3vCo31BYDm/WimRoYlBEx1w9oWsidJkGnx0dT
C/LDa5yRzQ1xrRssnXvsXYcKe74rvHzScbHd3tOe09+5ABj44MniviP2fwHv
mq0S
"], {{0, 70.}, {96., 0}}, {0, 255},
ColorFunction->RGBColor,
ImageResolution->{72, 72}],
BoxForm`ImageTag[
     "Byte", ColorSpace -> "RGB", Interleaving -> True, MetaInformation -> <|"Source" -> "http://www.freebase.com/m/05bl7bb", "URL" -> "http://www.wolframcdn.com/waimage/hset073/be2/be28cb5ad380ad5ec00b76d02daa2ebf_v001s.jpg"|>],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{96., 70.},
PlotRange->{{0, 96.}, {0, 70.}}]\)]
Out[2]=

Options (5) 

BakeTime (1) 

Deep-fry an image with less "time" (nest Sharpen with fewer iterations):

In[3]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/61d4a561-da55-48b5-8696-f0f3d5addb5e"]
Out[3]=

Flare (2) 

Deep-fry an image with additional lens flare:

In[4]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/ee993968-7ec9-4e00-a009-c318849f9c66"]
Out[4]=

Deep-fry an image containing multiple subjects, adding lens flares to each:

In[5]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/1190dc7e-0b1b-46f1-91eb-640213a68d56"]
Out[5]=

SharpenRadius (2) 

Specify a specific radius for Sharpen to use:

In[6]:=
ResourceFunction["DeepFryImage"][ExampleData[{"TestImage", "Apples"}],
  "SharpenRadius" -> 2]
Out[6]=

By default, a radius of 50 is used:

In[7]:=
ResourceFunction["DeepFryImage"][ExampleData[{"TestImage", "Apples"}]]
Out[7]=

Publisher

Wolfram Summer Camp

Requirements

Wolfram Language 13.0 (December 2021) or above

Version History

  • 1.0.0 – 21 July 2023

Related Resources

License Information