Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the torsion of a curve
ResourceFunction["CurveTorsion"][c,t] computes the torsion of a space curve c parametrized by t. |
Plot the twisted cubic curve:
In[1]:= | ![]() |
Out[1]= | ![]() |
Compute the torsion of the twisted cubic curve:
In[2]:= | ![]() |
Out[2]= | ![]() |
Compute the curvature using the resource function Curvature:
In[3]:= | ![]() |
Out[3]= | ![]() |
Plot them:
In[4]:= | ![]() |
Out[4]= | ![]() |
For this curve, the torsion and curvature are the same:
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
Plot of the above results:
In[7]:= | ![]() |
Out[7]= | ![]() |
A curve that is qualitatively similar to a torus knot:
In[8]:= | ![]() |
Out[8]= | ![]() |
Plot the curve:
In[9]:= | ![]() |
Out[9]= | ![]() |
Find the torsion:
In[10]:= | ![]() |
Out[10]= | ![]() |
Plot this:
In[11]:= | ![]() |
Out[11]= | ![]() |
Compute the curvature with the resource function Curvature:
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
Define a conical spiral:
In[14]:= | ![]() |
Out[14]= | ![]() |
Here is the torsion:
In[15]:= | ![]() |
Out[15]= | ![]() |
There are other quantities related to torsion. The inverse of the torsion is called the radius of torsion:
In[16]:= | ![]() |
Out[16]= | ![]() |
The curvature, which can be calculated with the resource function Curvature:
In[17]:= | ![]() |
Out[17]= | ![]() |
There is also the so-called total curvature:
In[18]:= | ![]() |
Out[18]= | ![]() |
Definition of a unit speed helix:
In[19]:= | ![]() |
The curvature, via the resource function Curvature:
In[20]:= | ![]() |
Out[20]= | ![]() |
The torsion:
In[21]:= | ![]() |
Out[21]= | ![]() |
The relation to the Frenet-Serret system is that the curvature and the torsion are the first two quantities:
In[22]:= | ![]() |
Out[22]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License