Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the final angles and spring length of a coupled pendulum based on initial conditions
ResourceFunction["CoupledPendulumFormula"][parameters,initalcond] computes the angles and spring length based on system parameters and initial conditions initialcond. | |
ResourceFunction["CoupledPendulumFormula"][property] returns the specified property of the coupled pendulum formula. |
d | pivot distance |
k | spring constant |
l0 | spring equalibrium length |
l1 | pendulum 1 length |
l2 | pendulum 2 length |
m1 | pendulum 1 mass |
m2 | pendulum 2 mass |
li | initial spring length |
t | time |
θ1,i | pendulum 1 initial angle from vertical |
θ2,i | pendulum 2 initial angle from vertical |
"Formula" | equations for spring pendulum |
"QuantityVariableDimensions" | list of base dimensions for all variables |
"QuantityVariableNames" | English names for all variables |
"QuantityVariablePhysicalQuantities" | physical quantities for all variables |
"QuantityVariables" | list of all variables |
"QuantityVariableTable" | details on all variables |
Solve for the final spring length and final angles from the vertical for a coupled pendulum:
In[1]:= |
|
Out[1]= |
|
Specify gravitational acceleration:
In[2]:= |
|
Out[2]= |
|
Examine the equations of motion for a coupled pendulum:
In[3]:= |
|
Out[3]= |
|
Find the quantity variables used by the CoupledPendulumFormula:
In[4]:= |
|
Out[4]= |
|
Obtain their formal names:
In[5]:= |
|
Out[5]= |
|
Derive the physical quantities and unit dimensions of the variables:
In[6]:= |
|
Out[6]= |
|
In[7]:= |
|
Out[7]= |
|
Examine a table combining all the information about the quantity variables used or derived by CoupledPendulumFormula:
In[8]:= |
|
Out[8]= |
|
See how the pendulum angles and spring length evolve over time:
In[9]:= |
|
Out[9]= |
|
In[10]:= |
|
Out[10]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License