Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the regular Coulomb wavefunction
ResourceFunction["CoulombF"][l,η,ρ] gives the regular Coulomb wavefunction Fl(η,ρ). |
Evaluate numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Plot F0(-2,ρ) over a subset of the reals:
In[2]:= | ![]() |
Out[2]= | ![]() |
Series expansion at the origin:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate for complex arguments:
In[4]:= | ![]() |
Out[4]= | ![]() |
Evaluate to high precision:
In[5]:= | ![]() |
Out[5]= | ![]() |
The precision of the output tracks the precision of the input:
In[6]:= | ![]() |
Out[6]= | ![]() |
CoulombF threads elementwise over lists:
In[7]:= | ![]() |
Out[7]= | ![]() |
Simple exact values are generated automatically:
In[8]:= | ![]() |
Out[8]= | ![]() |
Plot CoulombF as a function of ρ and η:
In[9]:= | ![]() |
Out[9]= | ![]() |
CoulombF satisfies a differential equation:
In[10]:= | ![]() |
Out[10]= | ![]() |
CoulombF satisfies a recurrence relation:
In[11]:= | ![]() |
Out[11]= | ![]() |
Express the derivative of CoulombF in terms of CoulombF:
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License