# Wolfram Function Repository

Instant-use add-on functions for the Wolfram Language

Function Repository Resource:

Get an association of the properties of a conic section

Contributed by:
Wolfram|Alpha Math Team

ResourceFunction["ConicProperties"][ returns an association of properties of |

The input *expr* can be an equation or an Association of properties of a conic section with respect to the variables *x* and *y*.

The three distinct, non-degenerate conic sections are parabolas, hyperbolas and ellipses, with circles as a special case of an ellipse.

Parabola properties returned are: "Equation", "Focus ", "Vertex", "Directrix", "FocalParameter", "SemiAxisLength", "AxisOfSymmetry", "SemiLatusRectum", "RotationAngle" and "BaseConic".

Ellipse properties returned are: "Equation", "Foci", "Vertices", "Covertices", "Eccentricity", "Center", "SemimajorAxisLength", "SemiminorAxisLength", "AreaEnclosed", "SemiLatusRectum", "Directrices", "AxesOfSymmetry", "Circumference", "RotationAngle" and "BaseConic".

Circle properties returned are: "Equation", "Radius", "Circumference", "Center" and "AreaEnclosed".

Hyperbola properties returned are: "Equation", "Foci", "Vertices", "Eccentricity", "Asymptotes", "Center", "SemimajorAxisLength", "SemiminorAxisLength", "Directrices", "AxesOfSymmetry", "SemiLatusRectum", "RotationAngle", "ConjugateHyperbola" and "BaseConic".

For parabolas, ellipses and hyperbolas, the "BaseConic" property is an association of the properties "Equation", "RotationAngle" and "DisplacementFromOrigin" where "Equation" represents an isomorphic conic section based at the origin and aligned with the *x* axis.

Compute the properties of a conic section from its equation:

In[1]:= |

Out[1]= |

Provide an association of properties for an unknown conic section and compute the full association of properties, including the type of conic section:

In[2]:= |

Out[2]= |

In[3]:= |

Out[3]= |

The equation of the conic section may contain symbolic parameters; the properties of a general conic section centered at {*h*, *k*} with semi-axis lengths *a* and *b*:

In[4]:= |

Out[4]= |

Compute some properties of a hyperbola:

In[5]:= |

Out[5]= |

Use the resource function InteractiveConicPlot to visualize the results of ConicProperties:

In[6]:= |

Out[7]= |

Each property has specific syntax that is expected. If incorrect data is given, a conic section may not be found:

In[8]:= |

Out[8]= |

ConicProperties may not be able to resolve some properties into a unique conic section unless you specify additional properties:

In[9]:= |

Out[9]= |

Adding additional information specifies a unique conic section:

In[10]:= |

Out[10]= |

Specifying the type of conic you are looking for can sometimes help to return some properties, but may still be insufficient to uniquely determine a full conic section. In this case, ConicProperties will return the properties found:

In[11]:= |

Out[11]= |

In[12]:= |

Out[12]= |

ConicProperties does not return properties for degenerate conic sections:

In[13]:= |

Out[13]= |

- 2.0.0 – 23 March 2023
- 1.0.0 – 04 February 2021

This work is licensed under a Creative Commons Attribution 4.0 International License