Wolfram Computation Meets Knowledge

CloseCellGroups

Contributed by: Richard Hennigan (Wolfram Research)

Close cell groups in a notebook by style

Examples

Basic Examples

Open an example notebook for testing:

In[1]:=
nb = NotebookPut[Import[FindFile["ExampleData/document.nb"]]];
In[2]:=
\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztvXV4o9mZ6Jnd+8/9b/fZvXd39u6d7L2TmXRoOp1JTyc9M+FOd5qLuqq6
mMEuM5WZZJaZmRnKzMwMMootyZJsSRZY/OmD/UC2ZazuTlUnVTm/p+DofIc+
eA++5z3/847TuQf/63e+8x23/4z/c+621+9cXW97n//f8R9fOLo9fuh4/96H
ju73H953/eWd/4R7juN/f/W/fOc7hBsDAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB4cUAQpNPp9AAA4MXxssVWrVazWCwej8cF
AAAviJcttgAA4JUDBQAAL5q/tFgDAAAAAAD480FR2HLgjwVCEeRrJIDAXy88
AAAAAAB/O1ADZ4NQmOvNSvXk5ASvF4dzM7xZ8U4bPX1kAJhoSfHGF4YxapCN
IoSbgrhkwf/VMzo2B0Zx9/4lAADwktgT2xwvXGxXfX7V99HfM9NwsXW0ii1y
khiiGLY/VyYvejQXmvqyCwsAAI4CMTJGn1zY/00KNd6SshNdeaUFRi3x07jc
LHhWTYxjUczE6RG31WrGKhYevjXx+FNmoruMwcLIBvkvcwMAwN8QKAoZUdii
G4ocuf+RyWhBLWYE7/1imKrJe+jcj1aT3FZ83590e2SGMFg6NXHh79ZHOBhm
WXr4j2vVHTvT5dPXvzf+8BMgtgDAtwpCCKl+JHrkwce4bOIiif9FlWOT1/9V
IbEG4Ud9wOmcxh2aTt9x5zvyrrgp5zsQKaCSlEtz8QV/oaIDAH+rHBZbM/7X
MJE8fPGfWJn+rGQXdprXzK0fLKaX4k0pLtDrYe/0vPc/5Fwl0VdGYCH989nI
RGJKimyjAQDAt8GpYstOdmWnuLEzghRLLGLAq+OteL47dPYtCYNHTUyJYs/O
RaeSC75AbAGAbwtKbEfpo48/O9hJfkchOTxQlWZ8MZ+YqRmNG7n5iYlUshDS
P56ixX/bZQYA/sYhxVbXH9T/5X+QYotQWk+qJp/h8/+4HOPKSrKf87ilVqCm
lcLh8/+iluFXDWvOb87GpuABd/oihj797iLdTTq+QKYGNKYAgJcPMWLFIOGI
sKnUqjGBd4bJBSDjWic/1Y2VEyzncHBx1AyXSIYnqesW6eR6RbqZ6FBbVAMF
rFinzcVFIi4QWwDgL8hJ+49QzFbdAgAA/MWwVVzcA4FRGCKmmygRtt01YBMe
pXQgwTZDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8DpCKUehCM6J
WlLkxVN0qFAEhk++jMLwaXrOKHpa1qcXjCjb87I+6eqxFuiJ1HZ9UDJj1ObW
YdgC2+hskyVH9n+QquD7pUURi8Vimz6CnJY4cjBx4qHaJr4b/NBN7P+HovDX
1yffL9I3jW69gW8UHQD4mwUopf6tgUImg96MV9briwPDc1y8dbCQLSPerOAu
0kG4GAM981wlXuWbof0WAa/6LRaIaM2Qnd6Oli0d3lrAVIODRyHaBbwGhmFI
JexsGTQQSUF4mrvfGH7JAkGEXRwpc6x/aoXMei9HogFFyKzXRvunVjfJrKFD
WVuIn8bBzuYNNVnu3ayJYGTWFp20s7lvByEaskMNH56/clPM4XBEkm2ETA3C
00PNw93Ngm0zee8WxsiQXAutTQxtKMl8EbizLLWgYwYvmNlkwkurFMx3D89S
eeula1Nz66ZtwfjECpWBfoNBj0/hbON3bTGZ8cQtY73NXJmBTBxZHhva1ECc
qeF1OUTeEdxfnZndPIa3X2azCQ+jES91DUxQiZtknIlptkklHh8jd2nt3glk
NpogomxavVYtXesaGCet3UPUQyD6BrD1URDPlHyzCPksENRqM2x6oHVVvIM/
Ae0Ws7NvFCUCk9Hh/ejIydHnhtqWhSo8ul7O6ewdgrH96GR8hOqJHY1+4CNE
rAWk+n2Eiyg+SuVMdGhg6tNCTGYzZO25oQiVqk2yMBGGSgwm3ynxESIwZDRD
p/YVXyWormVHdsCFe364oy/HM7xkkLp09A6rQz3Tm1ZPTAtad7O/JyIf58FO
J+nWLj657SM7uSQTVbSAjCZrhCN5dyT400unTo4t93lya0V7JLLVzXe66bZ+
0GgHStqhVSy1nL90ISoqqqB6wOai0d/x+oy1rIah7laJWjM92MLdMuK/kU2G
S2icRL1/+Cm3N801PJ9yq0XTXWPLevlKe/8U9ZG0lCaktExDNjnTXK4PCSk3
NNrXItzWLIy0ronJ0iuZriHRApV2L7R4vMAxMIVy66TzHcPzBiW7rXeMujuq
BsuOc23n6DkduU+LOraYzfYeYSc/qMPg1Rj+b5LPrbJhokzKpbpHbsFf/eOm
omcG3Cns5eAOLav1obMf9LxY+3wTMdqOLyg0kJG/euy18YbcAcK2oeXUkdqr
AnEPJnlucrCnbyRLZVlqoT92CaFHpQ6vbuMy/SwvOSatUIuhG2sj9Lgkt6v3
n01tKTcZ9MTE3lk2lcDqSHNSYmzPGAdDlYEON8PouUnZ9biIaPiTYbTojqll
vIWsLclKCA6ws4sxYkhbXV5iRrHcSORsVm3WFcTFJeftQOhaV+pjR7/Y6JTu
OTH+RtpKM6ITsrcRTL4+jWftdfN+cQ9fp2LRExLax5bIrFHOVFdiYlxLH/7T
FOl6KyQ6Lz6tSof/kDIiQ6MaB2dRFGquyksID3l0N0SDob2tJYkpuWIdTLYd
hBivj5e7ppZQj2KTORIbGU4LixxfZaeGONASsmJTatQQwpgc3Nabl6aGJGri
e2S0JP7h4k2mcKunPjsslJZS3LA0Uuvs4ZUYm9g8KTEqeVNLXJ1CMDG7TIit
UeFw/WO3pBapkJEQGUajRQ4tsXPCnUPiM+iJZQoIXp4e3NKaV2eHhNtEncDu
zf79+atL/M2hlnw88YS86pWpZhc39+T4xGfD6yaNcHKBaVBtjM8QrS26O+zN
TfOJodM8XGlSE6Zk1HhHZhk14raawoTYmKYuvJhJxe2j0M5GZ115ekpKWfsy
HnWstzY6OnJ2XU7de1a4cz9LMTfcMdxdFRydrtvZ7KgtSoylN3R0NeWl5DcP
QjpJ17PyjNTU4uYFPPrUYEN0TOQkd5OKXhDl0rWyxRjtGOmtC4pM0mplXc+K
E+PodW0dLYXpOc96IAP+uMoz09LyG2ZwWZsbbY6KiRxjijFywoSq5DnTnWXF
FZHhmWwJXh9tZaQkZaSXjE+xeWujFYWFPYMzA9WlKcWNS2P1v/vwo6iKXrwH
AOvE3Q3VqcnZucVDxKsZbYpJSK0u7xRsCIc6qsrKGxemZrMSE7umlrKDrn1y
03GSt020vK96m0u2OFvzTX6RuRXxT+m18yvt8Y+DMhlTw96+EWU5aX6xRQtL
PI14xvGu4+jCQqTLo+L6vhA/r7yqci9XhykRUedtcRc7nqV9ecNp26j3vneu
eYZZSg9Jzy+L9POr6JmTyLbbc6M8Y6sWxirsXKI6aoqcwlPK84L8EqvxuJBy
e3mml+ZwKbGBwR/MuutJX5yd8XkaUpGf5RORPbvA0clX3O8/6ZtdSPK2z67q
iQ72zqqo8He3H2Dt4NHlvNXu1vwvL9+T6E00+/OVIyvPUiKTskvigvwLW6c3
pLLBikSnkALGfNNj++CuhkqH4NjK0kjPqEKM6IQRpgHkjIZPzn6Ot7bDi3Ox
3r4jc1NPLlxYVmijH50rahvP9/cr65mM9n0wJZDFuF3rWsOrBEwy0+BIz5ho
KYzJrOsrCnWKqpMuN1676T4/2ePikjo2mP+UXiKaqbbzJS38IOakyKfFvaNZ
gT79M7Nul87NbO2kOF/MrB8ppwXmt40nBj0YYstSfK43zuP1JKZY7nCITJ7q
qIhIKh+ujn0cUCTn9l790n5uesjVIW58rNwjLEuy3PLII5x8f3hPkniD5XE3
3/jnn970TMElXzZT6RNbKGN3X7zpwJjrOnPhXP/CZIiTZ0d7zfUv780yZtzt
wnp7ah18E+bmx7yd3BmbxHMojvNwcHgSlt8gXev0jsiU84cuXXvIWBg4f/6z
nvlpmrNbW8ezG5duzS4ueDwO6e175uBNn10Y93VynSa/gYqkp3j0kKyaLW7/
U1rytnDy8tXb8wsjly580j43E+nq2trReOvi1enFRa9HgT19jY6ekTMLkwHO
zhNCIjo+7sH/zQu86p/TNdlaFRSRnEILTG0Y7i4IdA0vK0tx9s1oE47XXDt3
r3FsxaRYtvN6OsbewmUPEg9/efHS9BIn3ts7vzDf1SloZnnO4dqdxt6uBzev
LPIlma53nIPzRYqdvmr609Sqba35lMnJVwVqRNCa6nfNITQu2u3R06SOmoTo
ihncM9TvntM9l4Z5Je7eWWq7/TgOdzTGBKdn5F45ez2vtCIrs2Qdb31MkprS
oqIC+kfnb0g1Cn+nh2q8XzeU5eBs5+puPeMg18epeB7/NrgBnpFJIT533KMq
K4rLW4keL2uiraiyJsjhTGDpGLsv0y+zF/eMCbrvfN+pbJDos8GCodt3QnFH
f1pkSlruzfNXM0vKczOLmDIDhijqy4tKSlM++vwCX6UJd7snwIs6X+7g/NjJ
gW4ms64M80ztxRsURZBbaFpU8FX74IrKstLGYZ1eayYteoinq256+ONjW+WO
vCjaJyYlpaC8B/+GIjwecGBssaKgqn00JdpzXiTPCHUc5hId4x32gE9evYI7
5urmFR+bytjQbU4V+STU4N3phKC8keHSiPRaMaPZNzqXuv2i7KhejqwzIygs
MTW3qA1vsOO87zN0GKexFC9JVpznBE9eEOnUtaLCA5uEk08zK5SCOU83j8TY
lOl1jXqp1iOyAJf/5ICs0dFqWlLJJrPHOzwVr3Z0Wi1MzgOkBtwsnNgYLQuL
bVgycJufxhRuc3q9InLw3r43LQMPkOPrVlFVSUsgipQXnlmaFRuQ2oe76U+u
Ns4S+aZ4XPro0xvp7RPb7C68sVauj3oQR1TAfqGpeKekIMCtvKoqlE4kVRCe
UZYT7xvXhruTnK7XjBFjiWzfa3/6+Gpy87BqfcArNEW1Me0RRHwwwbQk/JGV
hbqXVtSERCfjPiWRGRV5SV6R9bg70+NmxaDQAJnx0Sdxie5ct4jfDtfd/Z7D
XR+8R4sw6mkJNTX5oZVDAgzRL473RMYFDM9M0BJTTOSzNW2MuHiSn0dJgJOj
Y0A8UaqMpwFNPZ200DA8jE7BbapIjCur7GsqSusmxnevQSeZqHcsCpqf9yo5
UEuNocUn0Dw8vYMCvBLqpgTMUXt7x4ikdL5anBPl4REZ7XzzYdM4q6s2Ozgp
s25oBv8CUc268zXHuKQcL9cQyY46xuVaYBTdwT14VSytyQyz9wqpHpzgLA88
cHCICg9wck/msxciI8Jzc4sXpESW46WZt5/EJAV4pzXOC8dL7j1yooX4RpQM
inizzg6O4bFJzO3N8kQ/57AI9zsPKnuXB1sKA+PSq/rGiDraKHl6yzEqMe+p
ky9PrU17etM3IsbR1W9BIG0rpj9yDSztGlxnT9o/sYuMDrF/EsXlLcdGhWXn
lnC2eVGBdr1MvILBhNN1HkmUfEG1yb6PXTzoWfkipTQh0HlJjUyXFdT3TmXF
+61sabNCn/SziTKrWYP+uXUa8bLTg+ue/mFtk9PciYrAhAoEUSSFF0+MVdFz
mxRr7U/DM6iHXJob082Uj5ZEPHB0j0zLXt/eSgtxmdq0LD0rqW6fyE/2m9vQ
FkU5ti0RNaRBMOmXWa7ZZHs+vuHpE9o4Oi6cb/CNzkeQnRRa/uTks+j0KiW3
zzcmf5vXbO8XQ32CeUmeNfhQXLfu7RG4yBjzC4xZXugJjMlG4W2/sBQdasoN
9m9ofBYel4WipiT/VI6YGREeEBziHZtTR55TgWVHuE+INV3Z8dmFZSERcUsL
AwGRqSiiCaAlqlFLIc2vvrEhLCYN77ym+iezJOzoqKCgUJ+YjEo1aWKhINpj
aF01UJCYWVAeEhazuDQSEJaAovqQsDg5ipRF+tc1NIVFJeK908zAxBUJN54e
HEjzjc6u31Ys37v2mG8gClFJf3LX2cfXy6NqkrXUV3DX3TfgyV3/pGeNxREV
/TxIx03KSHb29e6cYWTTHb2Ta/GuBSKbuXP5bFhUuGNgqnBTGO5tHxgdceOL
h52jg2Gh4SYUHemvikuM9EgrW5rvuvHwcfeCGEGPLp+9gqAWo8lIjPQsiMUE
Gcwm084Wf0NKXdSrt7jrG+SbMa3z+Bq9ibKOwWMx12Vq6uYhvZLH3zRbyGVX
2LC5wZfprbM/Qj5PpiIkTCvfEEjkFjPhb1JKmUzOjtlqUkMqEsq2jeTsL2zS
yvgiMfUpmrQKLl9Izo9aBDyeSmukRiQCNpMn3aayhk0aHk9qgsjRCmyUifmb
O1Q1jG2s8zYVxMSOQSlZ39iCyKwtGhmTydaYIKNBB5FzccQEo8lIRFeuudsH
9QwOxj+9El85BJmMEIxfhCALbDSZVHK2j+O9WbGFmHQ3m41my2BZ5tPo6sG+
yrv3HrI0RBj8FswmyAIZzUbdcHWUf2I5RvZiTWYTvMP3dghsGxpMC7wZUdhh
MRuJmXgqcaNJoxAFON8Z5RMlx/2MZmiyLt89tHRwoOHe7dtLCjxxM15Cs8ls
gUwmo36qKdE7Jh9vbbVa68wVhJeIvB/YZIAsqF67Y4TwYhLVqslkxv2JGW88
MtnBMBmMZBwtj7e+9xVAZgPRUUURncGo1+nw5MjeiDU6ni1ETIPbRIf1PB7f
JrqR7OeieHSD/oToJiK6mYqOGHhcHv5uLUpuSlzxlp6IXBD+IKmyV7ClpL5L
+cb6WHWKq08ehD9WEzGrIBVyBZJt8r2r+IINPLpJNGT/xH5ZwNOQ7bXFuMPn
sUIf2rUwtk0mE/7QcB82m2sgv0e5VCjXELm/6kPb00ARm+NuD0zOHqyrjn8E
iI0CA3pQM+H5kQkpPDZr7Ctmva/pgJ6Y9YGE8EwQaLG7PSk1tb6h3wjZhiTS
Whqsy6rpRbH9KXKTXFKZnp6amr7Mkh8uh0mWm5k2L9rZD45aVvu7E1NTa+q6
debDxWCNN6WXdyA2iZtVstqszNTUVMay9HDiFlVRdtoEV3nsbZx0g0dC7utv
fJNPeP/VHl0w+ErRd1f/UINKKd+xzskzRtqWNojZAwS2qq8YxStdffOH0rb9
/iw7wo5uaglg/7VPdnZw5OZDpXsND8c5tHxmozNk40aP+B8T/tCvQ5Ex9Ejk
E7M73X1ibgd/2JQbPey7X4Cv8ICeH+Sb80IS379t7NDnejQXmwd5bDGOE+WX
Hd3mus2LPnrJ9kUeE+e4zE+IA3hN2F2sP6ZRRhH48FQGoc9gseqTHAkOk7oE
th8TpTRCaQLsYZP4Qat9pycOH1ZUeJXZfw77GpL715DnqUoeozFrq5gKAHwD
QAUPeEnsqq1Z63ZKwYxcBLdRKiNUzhCzmdAqoyJRymOU6qNVmZBSKkOsSmVU
KvgVo9lMpXx8RrA1I3g3I/w3RGZEeOxWtgi5xEzq7FsHPmRwol6laum9nQi7
DpRKkZAbSq+PiIVSKyaE/5Fk4YPJkjU9ip2SLHYgWdQmWQLYrNOT6kIwrFKr
od2eml6r2eBzOHzBtlr96q9FAF4B8kpy2MREC/bVx/caznDsM0KD5WttDCmr
yFmQnZbH12rFvnrQF5QsObNtkAd7+3AV2rrkqIKKstDwNAt+X0nhVb2jJWmx
8SFuv37/moiY6z1l4xIAcAzUHK90bbSmvComMmWMocIwc3l+elJKfl8fQ7S+
UFda0NIxOtXenJhevLg4dvGT953jqzQW/PPeGWmrzc4sTExtwL86CWskJj65
pKCBzd+YGWosLqqemV4sT06s7Ztpzfb6/YWbbTM8/EveYk/UVVbTo1L6J7cw
zFJTnJWYnNvVNbshXKovL2xsHZrp7khMzltYnLlx5o9P4qsXppoq20aJgsI7
o31dBkKzdKyrv7eTPKVocaq7tLplUw8vDzQPc1Q6IWNsjtC33GKNT66IcKnp
6hhs72vjq1BML2lsqG4bYWHGrcrqViOGzfR1kPrFxrH+Di2CcabGu/r72kcJ
PZO1ub7SqqYNjYU12ta7IjNJVkamiWX6bd70GIOHmVXdHYMdfW0smQUzy5qb
apoHVjCzoqqqSYthC/2dEh0hztSAizlU7fDkQWhcKS6dhXEhpVXVIbRYagq4
KckjILtrLyQA8NVByB5jb57n/cDMhclhX9+I3MSYoLT62d6cu45xrdXRD3xS
pdyJ+2e+zG2dMOk3/f3c6sZ5xHYdWPTo8kctc6ySyOD0vAJfJ6+h+QXa41v5
jf3ej75oW1xvife8ax+5LFCwhkvsaKmSbWKFcaIy6KZHHGNmyvdpSH5qvG9s
xfxY2e2HYZ0NyXfcoiTCBftzl9Pqho0GJS3ItWqCL1xqrWgbIxojizjC00GB
IGXB/vGF5UFhdMmWIC4+Ojcptrp7Jtfznnthf2tBTFH3Gh52riEmrnQQ3WLY
OcUU5EQW9KzMdxfE5+Qn0JMZo31nLtwbnp8ODo5RE+KiiH5qJ7IgzyKDo/PK
g2mRIpk4MSEyLyW+rG2iLMDuSWZHd2lCNqGFi610JEXmtiFqtt2TiML8mKyW
uZWhMnpWXkJM/MLEyIVzN/vm52lBkdvWnRRUN3rz37/33aQuPu5jkIycef/D
xlli2XFjrOTMRSeZ5bVeQAS8NCixHSgNjXu2jDtCfO8633Nt4+NN7pJ/QGbb
s5SkikEMg3iLo4lJfi1jE0mpcWxy6wVmFnq7OuFO4UCGg9MTV69s3K+VHlLS
3BtL8+YbMZNe2tNaFJaRPjXYSCvrprKbekYPLx7HHVGB950fuNQw8ATW/b2T
O5uz6fnteHFEqxOpKQHPhkYzMuLmbVcmEVlUoJcJw4p8nCtmRaONOQFevsVd
KxblgrOzQ251S1lymKt3uJDU+GG0JKQ1z2PqpZv2cdsabnRAEC6kWyasKy/Q
NSKlub6G5m6X1ThOpquMDXRTY1hdiEfeCG+mo9Dfyze3eRbRMt2c7bMqmyvT
I109gzhK4ikxezLiq0cwE+/W/Qi5VhAbHBIUGCEyYENlYU6hCU0NdRGe9ik1
Qxhi2tHqqdH3ZEtBeExkeFQ2ueFPFuMcsKbFEIPEz8VxmlLhtxi1euO38KIB
rxOU2I5XhV+5+yQ00Duxfoa/1n3XwTncx9nOO7OvJTOxrB+FlNkFGYH+HkX9
M60lIY8DUzeJD23L/fYZv/BIB4/QtQ1JId3TIzzywcXrlT2jCeE+fB3KYbRH
JSU8iUxaYMza29+q7Gbgceab4r+8+ZAW4htVPiLkjtx/4hgR4H7fJWGwq5Ce
24rCmoLiTFqgR1bnVE9VhH1k3mBz5kPXOHJaByqK83AKCXe+fr9+UWMRtP/+
/XNjhDqVwfXjcw2rm/2F7lc8iI08+EBRJRi+Z2cfERHw0I5Q5i/0uPBlYBXu
WKrP+/JWkBFav/z5+d4VaokfrU7zeRIU5n7rfvn4Fiobev+Pn/Zw8Qxh7zNf
lM8KJqsDLjgQNRLek90RTz+yexweFXz/fgReO9QEXj3nRWxJ4HZVXLrsZbRI
bpz9rIuJqpbz7IMJZWyLmuXr7q9BsdbMwIIuNt5TT30aKcFQZiv9V3+8kpiU
EJ9bOTec7xJKaOpSuwgBgK+CtZNc6OufWMLf2KQ+HY1sgzVca/+QpoLMJiOh
zajcFPH4EuIaqhcKhMSWO0jgYXdjYIknpyZLLUYBj5fp7ZLZtGwyGSG8rYFN
HDZbqSO0yjQKsWiTaDvHq2hPo7L4Igm1H1OrEPOnW57cDdi0mPFYeEZqmZjL
2yAzMoiEIuZ0d3YeodhPzBThWawLDGZiwhe/rjcSrT7ub9RrIRhDILPORGzz
p3qdmi2xWK6ipnVhUpWQmHCGTTodUePodXrLXu8UMQvXBToTvJcsOUOM9xZ0
eLKoBdIZTdiudoZWLt3YUiJWrUizwQyRE85mnXY3WWKGyagjG1AUMukJjUoU
L4FeTyRiJh8m7i3bEuMPhysQG0wmvQG0toCvBzVxus7oH1sidj6i8O5JfHpx
R+swJVzovl6LzeQJrO7paKc0YskNjISDOdo7y1ZgB+djbRUGxKsjQ3O8AxlB
8s6WAYM1o71iWeNoZLIdUs/wiLrM82/qm3B6vFOTRU+IDAavgJfKN1EqO16r
7LAW4klxjiqbHVJiPPni0dIeVnY7oAF5MOtDKZ+aLHZMskeuHErWJrVDd3Ag
nd1YGADwDTjGKCL6HCuL2HFGGp9n13FPY+GA3ykZASVSAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF4AxB6WEzT0SfOHf27yhDkW
sAMAAHhR2O4KBZIFALwqoGbFukllNWZK2EKx2gu2EDK9w5bN9hKb6xDI2iIT
JwHtbmmnDJvtN6bUTwu5BRVGICNlK0M5mi1j8qjEqT+7OZOntOynBgAAngdh
lmVH1pEoaEwXNQSLxoaONreIoJ6R5mkjVF+9RVYJGxLMZHD1TOU2XwS2fwMA
fy4o0eRB7JrFjDDKA9pR477quSYtaQp1Z6lTqzKhm73LOe6Khe6N9iytjDAN
apExJG2p4r4O4tBFzKgcKRY1Z6nF1DGaJvV0rag1Vcla061WzId8tt5WZtSb
jcIJ7RYZd2te2p4hHmwh42I65oiKOykfyBUP9VFGSb/9xwAAvEqQZqBQDWs1
7tpaeap2W0f6IryMq+I1wrabqMhezNVgypF5+hWlRKxfy1+MczPrt9jx15Uc
iWF9yWy2KHoSRCMTZoWAk+Ot0+qU3SHshjK9hLnD58A7s2spjirhBgIj4pKr
vHEWpuUwM+zUAo56NGmljDigWVpxa7m6wKRY56RcEy/zMXA+DgDw1YD1EnFT
3FL457zuDvynsPCRlC3FhVpc7b0p0GLynuXcYGosup51Ty4UbtZ6rJVGqDYV
GKZYo19c7yjdGi5jJj+UcaY4mc7and10ER4nL9BInCmKSartN1Ylutk0VnUV
eU3OTHpo0CPyZmfBJBP/rejy53T0YxgGBrkAwNfAvLoQesVogDaKH0r5KtxD
UukhFegwee9KXigptkZ23AWZgBDLnbXutZRH4skWTprdtkBqVkshkwmDuSsx
j3T63QQtq6ycABN5ZvcRsVWsxd7W7SCKFlf+yDzexMraA3g9gxgQWwDgdEjD
a4aVVkFruW6To1trYhbFIAi6VWvPbGk3yueWoz7bXNdj8r7ZsPMqMX9nInU5
K9piVsknms0725JmL9HEtGowllNXYlZKdcIVFEO3Wp9y6muNUqaSOYmiClbc
jc2FFRiCJKU3eBNsspNsr17nKAfwTnIacU5Q+Q3OwCxejM0GZ1YLcU4BEFsA
4FRIi9xGuWKqXNyZLumvMuwQPVp0hy9tS5EtDGrWRvQqA6YXb891K2ZqNzpL
jTqUmHRiVG60pUhnekgBM6qGCzfaMuRz5Lk8mEE9VrbRlitfXsJ/mHgDwuYU
g1qlZ3aoRJvY3pRUv3VKSrvSohJt4Q49u0fJXcfA2BYAeOl8TREDIgkAvBjQ
fRWIPaPgsAUl9CsQbPfs5YMBSIWKQ+oWx2pfoAieFKk5aeNjq25hGxIINQAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/HhAE6XQ6
PQAAeHG8bLFVq9UsFovH43EBAMAL4mWLLQAAeOVAAQDAi+YvLdYAAABwGpTF
jL90KQCAVwHCLAxEiMzuH2D4HwAAfCVQSN6SKZteJNygzQUAToI8KwSWrwhL
gjjpTznpXpw0d1Z6mFZpJM7Cs1iswRAYJQ/Fo47JI+yzWSDb3uyuv4UKZo2C
h8F/7g3PSVNvxB8UOeyDkLbdYNXine8vphQSV4h0SCtzREawTUakOThrAQ76
w1R2L+dBAQB/PZBfvpmRP/DB/7mcQIptqptVbCkIoTtFEk48pforhDxVwA6n
cHrg0y4CAK8blNguFo7d+9R08IphuUlQX0vaUsVMnG5hcw3u3O7J3NncUk9k
MBOcNwaGMIwSGVjRV6xTqZXtCeyiLKqJ1i93sxNducW5Bq1V8FEdV1jixUr3
l6+u4C056cMTlj5lpfvJV5ZRmAi23ZspW2RZS4DuyJvjWfHOkr4O8ieRyPZA
sU6h3ZktZiU6iXq60d0SaOfLWcmO/LoCo9aA7XoCAK8nVrHNH739ka3Y4h1R
eHNy4sLfrY/xMQxafPiPKxWE7Ky5fHf0xnsrsfbs1Cdjn/2X1bJ6MriZ9fSN
CafLq1EPuJVFeIqa9oChsz9YTXJb9f9wwvkOccSPYX3R5SdzQXfZyY+m3b9U
b0KYUbTkivvcYSc/nna/ohITZ/mtOv33hZxqIknDxorHz6eenOOkec7c/If5
yAgL2bPmBPzz2J33V6Ifs1NdRj/8r8w64mwRdVfE2K0fsVLcl30/XMkvIm8A
xgCA1xVKbJfLRi98byXRm5PhxYx325xdptaLdzp9JlzvyTvpUy73SDGwrHn8
aCGugIpqHI8bPP/LHQ1xheX1g7nYNGuampnpGz+XCSDql4D+AaeXiUlbB8/+
VEuNlVEzPrqFeTVD53+qNVvLgZDtL9v/58vFjbhDXnp38MZZC9VmauYnzvzf
/MEV3MkNeGs6mEZ5y/PvjLt64I512r9Nx6RbEzIf6jUAAK8dJ4gtRrRXhBzx
Q9/uee97cp6K7HZaVt1/zGwaIa7BFkw9NXnxx9I1JR6M8G8YomaujLNZIxf/
gZnuz052Yad5zd794XxiIYaaBDEXxux+s5YVppcryazVwvgvxx7/ei2TppNv
U8Vh+f50qbgJdzC9fryY/4won4kYZa+H/WouPgd3sH1/ulzeRs1lKaqcJl0c
iAOHWK2zD96cDry10dH4F3mKAMC3yomdZHJqd4e77PHLoXM/ky6t74rtj5h1
g7jIIDCMaSYnL/3L1jpxpjzuv1rVRcW1EVtXdoo7OyNQzlilLukXmthhZydu
/nprdcPqw2hmh5+buPEfmyuED8vnzeeJ7ZuLBXVUXEW5/aSrs3VW2izbrIta
uP/mQlS4BW+kUbB+BHh9OXFKiuiHStLOL6Rka4Zjhm99RnZmLatubyyVPaNC
qBqcBq/9yUBcQNaevrlW24NR80ZEJ/lt2br5QD5aiWFbQ7m5Pj+bTS5BIaV+
y9rI8vx+PhOXhxFi+9bpnWR2AN6LpgbUGN7aTnm4Ea2teNU6lFX0D33+A6XU
hIFT+QCvMUcXgNI8WMmeO9uIeSl/6MLP1Qr849evOv5kLjEblwO27w8Hr77D
SnvKpl8b+ugNYf8ilcqy/X9bKmkjXBAxpFW3Bw2f/4flaDdW8pM59xsqOQQx
66ev/nw11p0Ve2vk0ttb3G2Y2zJz9V9W6e6suNujl9+RMgQYOSXFyCGmrE+a
klpz+x/zmRVU2WWFt0Ye3MMdG/TzUw/Ps1PcFp78cibIj2htgbYG4DWGbJIO
qlt4MlO8tdsm7Xi5ZGSSCmKRjK9XZFksCNPnLU59+1ZD9Fqcn2JJhFn1NTB5
V6p8mWdNkEzTxOrhp7mxsgPlbBZCLO5gZubIerobKytgm7NOZW5mjRI+mQHb
bD7ls92TLmMwd8t23AJQX8bW/G6Xe7F1o72NTNqw3ZLCTnLiNxRTR+KC0zYB
f9OgmM0aKLLm+SazcdTm6ldXt3hegOfoVwAxBAAOcuxWgv3jaIkAxBwUhiw9
/n+Wy9qJKSmTGY+0nwChoHhQsqzahpb9MSaym8sB5UbIdtcPeSTuXjrHKjfa
BNhVudwPCZQbAQAbKH0keWeqYoWPgQkfAAAAAABeGsd0hgEAAAAAAAAAAAAA
AAAAAAAAAAAAAACvEYTRNxz4RFMSCAzj1xGgmwEAfFt8A1UocJICAPBtgiD7
raLFbDRTO+VQxGQyWo5sg6Nkc5szExkWllPZR6hgEHoY6O5VjPgBGbuqs8LD
oxeFOxjQhwQAXiiUPIl43G21Ua/TmiDzGmNSoDDwGaOcLZ2YNbMiUuJdYbPJ
qNXpINJYDULqSi0NDIwtzN76w29LZ2SU2jKk2BBvEpvf8SoA2hZ1tw92FgR9
dNmXMCIFW4DcAgAvClJsURF/XSLg9vcPLC+vrPL4BhiWsua5cqNZtcEUSnU7
egFrvrt3QKggjtxFyYEt7oAE/XfvO3NVFvy32aSpjnd2CU2UaoiNP1QTXUZ7
FFHST+4oAlvXAYAXBiW2Ai5vnc3ibmyKuYtzKxwThhm32FyZ3qgUsiVKGEbk
Yv7i8qpihzD5ghBdamxzoe1X//LjvM4ZI0QcUmBWiJP8rn/hFMyTamC8uUVM
6e5n/nDVky9Tw8RWedDYAgAvDKqTrFGpNCrltnpHo9xcYCwo9DCkVaj0kFK0
ssSXqJTaA1HITvJqf3UgLSo1OXleqKE6yToxl82TY0QnGcPM8syoIHpSWmFt
B2lzArS2AMBLRCpgb2zrKbeYv7apJuy5oQjVxp4Mih78HwAAvFz2125QG/sS
R122URAYIhZuLXvCjKK2ko3CFmpdF7SzAMBLx3b1FazEAgAAAADwqnBYgerP
acJB+w8AfFMQ2ALjQ9ndmSoEhilFK9yHGNJ+Q/M11hHxodkvwnjk1zFajgcn
y4DsJghTJQMDbQDgGA5Km8UqMqhMLJRrdKQfIdRGg95swUUepiSUknSrcO1F
RkmJg+G91hWXQ9xXp1Fp9OQpJjD8Z9QPAMArj61OMmQ2QTBsJBQdYch8jE4y
FbSvLq96mClaHOgZ5+M/n2VHl7bM4Q7hTHdYZFRFz5xlP4alI9393z66JbWe
n4kVhtwMqV44phwWeVFidHh4+BhTZuutFMx2TrEpd3OGd2Dx8FH1DXSvbIhl
cbAxMSG+vH8RRvT5dBo9s1QHY4LJZu/YDDm5nAVEHfBKc1gn2WxmLc+u8dcZ
U5Nzy8y15RnmxmGdZIhsFcMvv/v/fmJXFOfll9iDYSZ60JNFvEHld5758Ook
RySSSNQSdmwoLTqzTINH0s6e/+wqz4iiGk4yPfzzX/84tp0lnh9ITUkaWtsQ
zfUmRkSEZVTKOP23bzxpKk37+KKrdItfnJOTWtK4IWB533jvn39ztqxlQiFe
Cfb3rhrh4AWY6a4MDwtrm+Ha3AxZo6gX7355o6wg856bf2JEQGBsie/d316P
bTXtyL3db89ISbVqILeAV5mjOslrPD55hLRRtLGplInYosM6yRCxxRYui6Bd
eXjzkw8+SqtlYJghJz0U7wSvVobedElgL3TlldbQXewyWqcKQm4GFi9g8NLZ
s3eNGJblfjm6tC8j6G5oeu71j/9448qFzx95JDx9ePNxhL/rzZi8Mo8bX9x9
4JTfMKwVTHm5Or375k9LpqQDJcG3/FLkSi0MGdM9vnDKGMeU0xcvu6wuDX95
/hpbh5lNWjPZKyD6zLCR7vinN77/T16xFUG3P3dOL0uNdjj7MAq/mhXnPgvE
FvDqc0QnmTHHFGp3lHOjIxsKvUG+zpGoDukkk2JriXLyLuto+OF//o5D4TyG
6bPTQvF+rW614aOzD5o7ij/77Yd3rt5OaR3L8btHr1kWM+v/5ed/WNvcjn70
aVRVr+/13z2NSPj8s88L20dXeeIM76tRZeNVkXcfB0V4PrLzdnsSkFiZG3br
kmv4w/feTRtVCgfTPr4bJFPumA3aNNezV/zK1OzeD7+wn5/uvX7x4Q6KpTn+
/qx3CV4soiMgGvrgs8/qKws+vHg90OPuZ05RBeHOrsnt+NW0GCC2gNeBIzrJ
0sWVVeGGeG5qbG1dvLm+srJ+WCeZ/ObR0fYuvtrYXZ7QOi/BYHVKlMeaAm9O
0ZWRNnpcQmZVp0zMjA6mJRQ2mRFjVUYcjUYrahyUCRbjo8PTM3KWBCruVFd8
YnJj39z8aPvQLJcx0to9PNrTO2ZQinMLy1cWpzKSEgryq5aEOsQoiaWFFTWP
SzhzdLxnHBG9uKGe6iyhhYb2LW6gRk26x4VrXgXkvDGMIVB/fXZCfFzXvBC2
qHIS6DHpJTt4bWOShwY8AJ1kwGuJVMASq63nSkv4a9KvopOMQjWZYdVdi99S
EQ+yI1ooLi3VkMtQp4jj+kybd2yi1ICBpV/A68FRnWRybvm03QEIsU6LwvDh
JRhqzZRcuNk3NoUHg0j9ZKsnaWNqb3WVXJUlD/YjnWSyhJNaFaIadyrkXnRi
Sy8MH13h3S3bXkx0f2kJiCrg9eWb6ST/JRswQoLhr5I9aGUBAAAAAMBeTfOP
f7Ul/ist1vN4Fb+BV4VDOslHsVUkpoar5ABzf7D5tTSN93SeMaty8V5EKtXn
vWWyI338FXRXtfKENIhh9G525Hj6hRt/RmHrDMCJZcB2HyClEXpIEfRgyONV
r6lJxf3kyH/3Uz6YnI3WHLq7pRo95d6JUp1sMXs3TXhv/zX5RHe/jQMFw06f
UTkVsoTW9L+eEvvfJnvaxVaphPens07U3t8LgJBzUSj1qGGZRCRXU+tNNrsA
Ts7ZNqlD4B8jWSLsq28g2J0l21WTttGIhg9Ove2FhE1akXjTACEHopOycNKM
2UF7AkeKQFSGZCWFIrsbIo5nL8BezYPYlBa2mA0Gk60dg/145L8nJ3vSlRcT
/rSkyH93tqVStfHY6/hDRagZS9AcH6OTjJgMOjOMfgWd5MHece7hECQy7mTP
3DrlVvGHo8KSBXrMohFmJ8XHJRUq8bcjnO7aV020Zt+V5fnuB9c2Dr80tK0o
rrB+knQiSx2VuQ0j1guwHo9pMWnM8GnNrmC0JSurxkBsayDnlyktE9LApFow
F0sLi4pOX5Xqjo2rly61jlBrW5au0lR6bOzIinTvqmGL6XLlT4/pjcfG3b8B
lOqY7BcPl3HrJ6+X1tV3IxjSWlUu0h8f3aLmxNMilqRG/nRrRFR0Qnq58uiL
oZLV8Bu6x3AHoy78vn8RFRv/O9Oel5TdatUKR00Wwpa1FkIxNWfcJ5zOUhJh
EJRaQoO766rXt0mtGsNGWmri9IYRMWueFWfE0+OneIRNXZt+FOFYHayjl3WS
v5Gjr4AyPrY4UBefmJRV3Yv/aC1Npld2kxfNrWWplBuvpvG0VIKpAMd7Xz7y
YKzvWJN7roCSQVCLrq4gIamoDc+tryYjoqSV2vb1vMivJEd1kplLM2yheHFm
ao0r4jNnV4/YSbbVSS6ge4Zldgvn+lOTkwZWN/VKflpiWmZ1l4S/5HrpN2+9
d7G0cRgPvNKWGJNfb0SwnKfnfn83ck24rZMuuVz+7Zu/v1DV3F2VX8hSYbKV
/oqOWQzjfvHp5TUtikLyqszUlIJKmRHGkJ2UcMcJoZosMlSS7DZMfDyoVrMe
XxeV2l/lXxU6LNXs3RTVqWuslS4qUbVQU9KjMamlgV4P14gE9l8kQvbrFhqi
3/vCdVuhNFssS0PPwmhh7fN82dpoSmRUaHIRj8+JtP/4jV9+UFY/0FUS9vFl
j1UOR6Uzro42hoWF1Q4S4jxa4H3Tu4C4zeF63LNxiqOVsXu6m1OiYzvnRNiu
Zek9JjuLOybICg0lS6CY/eijq2OL4xf/9H5eTXvP2Ap7qqN5iq0VLqWlpdX2
TeMipmDUh8Ym4S8g3+P8g5iaYtpdx4QGzcZyakpKw+iygj+XFRMTQk9f5vFz
/S9/763/yC5rG6mln/n0Jo2etrhBWJivSHSun9rA791sUhS2xdK7K8Nrg6uY
PNigpgfebVog9m5QS3T6jfGngXS5Ee+m6BqTPL/7998tmdNuDWd9+SAwP9zF
Pu6ZzcdDbI1UcmZv/eFn//ipB0ya1j30geG1k9FE1Anhjz646pu+KlLhbuls
g3NAMFk3I5vzTc4BQYQbNpOXqh/edfRycBjgkmZCbb9TSJWfFsPe1NSVZA6x
t/dKQdYhSGHAvdvu9NFl4oErl7ucfH2I28ae03V/RTnGTjKXZ4AxrUK4vCbS
qcWsI3aS93WS71//9NMv0lNSzn/4x5tXzn5s59dRlfaTN/8tq3nOYNRWJrg9
ouXKlcTDY/blVA3gIolJV0dc7l74/K4LQ6RszHh6JyB9W6VK9fwypHQg2+/L
yBYehq6cP3MDj9MSf/9371/89L1f0OoW8OwKs2gi8jXr+TNPnd22yNdpVi+l
9DYyuEOJfS16vDdoMelNxLum+rMlyWveNcqS9DXfRqIMaRFO+X084ipkNpDB
KLFl9+X8/g/n0vKfcRh9t687LSyOOjx4HO3tcOV2ULj71aCK6fnmhIvOEQrl
Dt3uTHgruRFpc+raZfvFpenrZ85zIGy62OtRVBtm4F658HB+cfLxnYc1ZVmX
Lt55VlNR1z1HtbNS4erYyPDE3LLWjGpEC6khwYGJJTqErEM0zIuffRYUEXzm
i2sRfk88Y54NFPreDaS7XPv8y6vX333/k2Udpl9rya4m5KUs4G50K9fEaTx/
8aHd9TOXv7z2xy9uZtF9PznvXV8YdM+/mDlSeu6+55ZcNVMddvFaYCrt0f2o
WjxiQ37QjJT8hqHNjM7yBcFcQmf5lpGQlLoc3/ZFQmyp0yhqk4NKxwTETzMx
hxD6+E7ZhArRr334i//v+z/4WeEAB39yWr2eqomI8ZHZolisv3QrBCMfrsFo
OHZgsDrWkp4U8dDJax3/iGSz4Ql0qkuFbM1HJMQQbsSMR5Sz+37y3/+vc48D
Wntn8NzxV2q0EMUmOicovNpf8M6P/+lmYIHCgL9FvRGyELo+RH6aO2d/4xCa
9MjebpSLPy9OeFw4WY+/zmK7r5PMYcyvCVQatVjEXWbxNsXr/M2TdZLb6370
v/2nJ4ERn352prJ3fJUr0qrlDblhP/iHH/TL0NWmqDN2kbJtQmTW+nIq+wmx
3dnZkfDXLv/b/0yfUAl6Ej99ELKl2NFL5i/8+08vuybgqYuny995+7cMiawi
9PpHjyPHJ6YlKhP+mRRnh62THUgVc9jNxVtGfF+Ghq7o8M6i+Pq4tPFx/LeR
3fqzt98dl1rIGhiDlIart2fOBgu15CxFTqRrUtMqEYzb/fbb7wyLzNQ7ZTTG
/ObTBxyeSLnU8emFB1PTA+52HjEBT4Iye9oTbt/LGNUs1b53yUmypepJ9/jk
C1+8tZUudHx2/v707Oi9i7d5SnV54KU/PUpWSWc/OXNrYnrY6YFbXXXWFcfw
3SdMPGLB/HBNdWVTR5/GiOhVgvJYb4fATJmZbE22pj6/4KjHDM5Xvwjy83zi
HRvjcv6xb+Tty59HlvbMLjHxz1K53JZVSUhfntu5BzFVxZHuodFJty5/RCvo
mlvmDpaG3g/IbUzzdohvN4v73/vspkSmGslzu+1fPlvp/6FLKh6xIS9gYoNo
9cbGs/2b0rLa08O6rX3mmiwfSmzx5tIsYwT5RiphcuAMY8ot/qVfvxNdv7pc
F/SpXWhp+IMP3HIwTPfhL3+QNSghvgO8tjTrxqvD3nz3qlCuxozCT//jx+l9
RJMHETKFzbel+6ZW4skZdFqlYPyzP/x+FG9v5bO0eKvYWiSz4fGk2FqIOqQk
4NZdr8jrv/37d69H4fEniz3e+vAhodqGQHg/eKYr+6Pf/eKWbyZe+81X+v70
g3s6ovrFn7Ah8NGtyr5Z31sf5o5oMBMnNCbsdRfbg3aSF5dkai13ZWF9U729
sbp8xE6yjU6yobM0oW9VyptoT0hKaRxibDBn0rNy8yqf7UAIouLG0MIKnw3i
oVc7ktKqOvGnuzBQHxMbl1XaQHTBVLzYsLDcWqIX7fHhW8GNTFysK9ITaDRa
Tk2X2aQpTY1LSc5c3TRiiD4zxo2xZSDzt+QnuUyI8CLBS7w5rlK+wJuWGExE
Rc1t+8O7Hw4LcelHzeR23yDHWU+yqYV1iiDfB2QnGVPwu//47gf9PAN191us
8dr2UephTHSW0kJpwyyZcKG3c5TJnGhpnhYgsDo1mpZW3IkhlvrkWHxsO8uT
Lw7V4iH7liVq/kx0RBgtPGqSK18arsM9e5akus2Vuq5RUo/rmM+mty2zvGuW
epZk9bNZW9euNqiba+uYHHZ+SkRKatrI4oaMM0OPT8wtb8PvR8looKdl4a0h
c6QeH9smZzXg6W6tjkbHxhfU9o7Vxf7rr85GJmWJ8YYOURckhacUtrEXR1r6
5gWMvuoeYh90TYpr56ICd/CFjGWZjCmcZat3SFU2Q0bUo+YF6wbn4dq09IYp
4ikTx79Y+msLw2m0qNSidaGgPIMeF5+xtmXWbnOv/OE32V08auypFS+nREeG
hoZVdM9pFdzr7/06vZ1NNIK7YuuTXIE7ZtvKoiLCu6b5xCtY7vCkhZBiiyqZ
XR40ssOMErWIQcbMocclxMelZNXrEGiuLuTXHzmR50ghmFlZkBEr1VpqClJH
uaqV9qhffWBPvFKE3LG2uRpHC0uv6Sb2ifIGPYJ9X+NO8lGkAtaG0jol9DXs
JJ/KFrOXHpks0h2fAD7MsvNJU1tOmfJFG/MiyppnyNkkZKg6Oae+7+j7GGrM
7p4XYuSECR5yoGfjYbRIYSJkUzjZTo8rVJInEQ035XTO8rHd6RRrBi95pZDU
3YQPrHQcGQaeglGxkhgePi/SHnt1rib8cXApmeiJaY41pqXlt0FH/NXcCb/I
sKUt4gr+1IxmE/I8PdCV4aqa7gns4AOkWBupre4aO/bSPijSWZUcWdZK/rB0
VqVElrZQ/odDmpU1xWmrMhg7Ol+NamqKUle2LMdcwtCBZ5m0gmek9+s5JUVx
VCcZRfdnPU/XSSbXH+ADKxHUEh65GGS7AESt1VoXVsgAeIVM9MCloh2LtRgw
vGtdGbXalTpxOdVaSPzv8fWJQm5SQ/uBT773/YXOPT1nlFKOppamMOuqFkYc
QXZAoRrZXaY56nmK3SpqUtnWY2/dFkH3rWlZrXIdfoDw3hPeC4APL/UG4+6z
2l2D21P1Rg6mgJIF3JvyPVVEqQdCLmqj+4reR+7HYl1/OuaWkd0l3b2Hc1p+
5F1ZrBytgojPw6qyfkwpnnPg8uvNS7GTjKLPXd47/TJ6YOnk+FU7sj07fpGS
jGVdAqaavdML89fHn/0mTo7+dVMmVVeOf4CnXDqSJ3qc+3AwcqH2lEsv7KYA
X5eX1EFF/5YODAMfKQAAAAAAAAAAAAAAAAAAAAAAAAAAChQAALxo/tJiDQAA
/upQq9UsFovH43EBAMAL4mWLLQRBOp1ODwAAXhwvW2wBAAAAAAC8wpxsvfTb
LQcA8Fpj3VsHxAoAeBVAUVtLC1/L6sJJICYdQtokOZwVfIwnAAD4muw2ryYd
pNk+uMXZapzPpmeLHtnwfjgM9T874Bdrdb3ET8pGAVkV7PTQhz59R6u27Ic7
mhpo8QGA06FEBpaKcuymb78zfv1Hk3Yf8KrrYWRXmtDjbR+httYh9sPsK4ms
efxw2WosCKPsoOD/QcIZUU0hZLKmvK9PQqWA/7vv8cpZnwAAvh2oplPJ9vn3
Mfsb27x1SKvWzzauxAXojYQZMNhArkAhJmhHs3fsLaRRIhYb+zBGyiiZBW+p
re0u+R/T6ydrDeOEMT6l/Li2czc57TakN9hegDSKv1VrQADAV4BsPdWdvkPn
fm08KFrkLyM34hNefdGK6y8mnjrhXV1VfyLD472xKz8aufjuxsg0GdDMDf89
Mz+OGfn+6OV/HH/8uWpdRsZGWAFvr2Qmc+kXxy79w7j9BbWYsCFvnMsee/Qn
qjJADaL16CuTV340du2nK1lJhFl52cJqwL+OXvn+xKPfCPqGyUCgzQUADkDJ
BC/oV7OxGYStTcshY5wwy/N7o49vKFksC6H4AW/WBkn6Z3GZ1HRGjNz4xEDa
9Wd7vTFy/Qv54opFtykI+82owwPS+DnC8fvJ4NV/3WTMW7Rbq49+TGaBGSdT
hm/9Wk+ctKPn+v378OOr2i01JJ6RdDYQNlHpv58KDcIsZt1ck2R4bL+IAABg
F6o3y/L55VJhAzHMRCBZI42V5MYtjNmR4XKKrri8sdZI2v1G99ZbjaqxGkHh
vZEzb8uFhPituv1w7dmoNUX5wOjnb2wJiG4zPrZdqe6yepc9nvL0wB2m6dSR
278xWjBE1DD8+fe3pQfa+M3iB2P2l+Rc3rdy9wDAK8nh1hYxbjWEMhMcx87+
H8Jp4pyIFZcfrD0bQKlTJTBsuyV47NL3Zz3vseg3Rs78ZJOlxD1X3X+4WtlO
HlcKY9qFmas/E6/Icf81zx+vVHYQM0soupV/e8rLE6PE9tav8FbaPJM8cu8P
RgMxzUWcswaZiZoB1kiqfGYevT318AP5AnO/iAAAYBfqtDd1h/fgud+YbNo9
bti7wskN3LHiirekAxjZ2MKirvHLPxIzWGSQrZkrP5VSYuv2Q2bzuDVBYf3I
uZ8p5URne83rJ7jYUv5bBXennnphh1rbMz9Ubh1bLkjV4DN8/X3tDvLyzwoA
AF45SDvCZumqy89G7W5t8wSQWmFY6p66/HeieUKilp3+abWunwoKc58NX/7J
9vqWRcXlJ13o/+M/bfGI01dYT98Y9bilFUst2ysr9j+aDgkjG0hk1eOHyxXt
VNyt/FuTHu64wzSVTIxtiU60juX+1qiTnXZTbdlaFDZmQRC0We4j6hy26LWa
rujhK78DYgsAHA8lFGaxIO3e5J1fjF/98cTt33HKMiHi6EGY6fM2q4mY0UUI
JQyTJPfu2LnvTjz8Yr0md9Hxo00W0Rlm+f1szv/BkudvRy68Mevnb1RbF3xJ
dYseKhNZqd1sgD/uMM1lj9t9bCAPf0ZUa5zwMxN4jjffWsuMh2BU0529cPdf
x6/+YPTerzfGGWQg0EkGAI5jT7vJSGpJmfclhVBQtMC2YRCt0mIkT50068ij
OdA1rze53QzMojcr1bap2io3opARJs+TxWAzbKR2I1oThLXbFtt1W9QMaRRA
WAGA54Oi6Fc4CW6vv0oFoFSdVt3fWC5v24v5NdQSbbSkrLmfpIUFAABOAj2i
b3x0XLl3rI510Imy/N9h1veTh67Bh0Pa/Nj/eShNoJMMAHzrnLTTBwAAAAAA
wAsDLNAAAAAAAAAAAAAAAAAAALxe/P/K+ic2
"], {{0, 200}, {317, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{317, 200},
PlotRange->{{0, 317}, {0, 200}}]\)

Close all the Section groups:

In[3]:=
ResourceFunction["CloseCellGroups"][nb, "Section"];
In[4]:=
\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt3b1uM8thBuCDpHGZ5ruAXEB6tylUGOoc+AJs5MRwoSPgOECQe1Crm1B7
Kraq2KhWpYKQO9WqZXF/yJnZmd1ZShRJ8XlAH1jk7O7s6sO8nJ9d/ftfrv/4
P//y008//f137//545//7z9//fXP//9f//b+w59++fvf/vrLz//9h1/+9+e/
/vzr7//yr+9v/uP9f//xXn79/98AAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Nv5
DQD249ARBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAB78Hz7cPnjfvp1sXreUw0W
j+v9X7/safcAHDMxBMAxeblpcudm8UXH63JQDAGwdvQx1Paeal6iDeD0VMdQ
HAdXt6/hh8vr9v2Hu6d4q6fVVV++L5O+xg79vvmcwEpqBcDRq4mh17uL6fmj
LmWiN7sN23TYJYYWqzTXxrze3eoQAZyW6RjaxEdQptsq7n0MdtV1oB6Xw71V
9nGCGFpeb/bzenedXUEhhgBOzlQMdVEyGG3rNowipl+G177ZdYWSPe8cQ90R
2w2bsb7BEJwYAjg5EzHUpkZ2zqX9KN4wGIVr82uw8PsDMRSnT7P/9OhiCODE
jMfQ2Kdt3ydNqH5NQqEP9bEY6g7a7bbZVdgdE0MAJ6cqhkZew47SdilCLms+
GEP9HtokSgYGxRDAyfn0GAo22UsMjcwQiSGAk7P7oFxWP5e0Km34wRgKBuKa
eahkfbgYAjgxuy9RyOgmhtYxEa+aS3e4YwytlyV0E0PN/pOdiyGAk7Pzgu2h
6GbVwY+d3F2uZWEMNTVp99Zm3KDOYgjg5My4fTUOlHXKhO903Z8wX7IR1j8U
qGqgL7x9dbGJmNflIts7E0MAJ+cDD/OJxtzy+8n1fdJlD2MjfovHOc9cfbnx
dFOAE1O9CCG6ISiZ9OmTJZMC/Ue5Z81ln02Xbl79l4/eu2Nf9pxwAM5FGn8z
7mACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADhuvwHAfhw64gAA
AAAAAAAAAAAAAAAAAAAAAADgAF5uftxf/ri/WRy6IgCcn+fbh8smhi6vXw5d
F4Bz8Hp3cd81vNnXxer50FX8WnpDAF9JDAFwQF0MXd2+HromAJwhMXSyFo9j
3djwZZ4LOF61MbS8btu0h7un+IOn1dWPcA/t3MrjMtpqZHyvKd99tB0hTOsT
N7ml2kaHG1a1qszo3FB/sqPNe3hGNVegqtqZmtSHy+LR1wzgWM3oDXWtZdSW
DjfvYyj/Xb3U7D8uoxY+LFaYvUqb9C4+RovNKDOIoeIk2qBk9ow2ry6g51Qp
Z7GqSqtN5W91iIDjNGtQbtBEd1kTNq1huxqkyaZNzsfHw9XFsIle2/QUgta+
O0RY575YsIfmiO9dhuc5ZUoxlKvGJpiSbC1cgT6X51Y7L4ih5fVm89e762x+
iSHgaM2bG+pvq2nbvW7buMXuG+HhkFGfRPny2e//XdNd7kPFZzG6yrqmzFs+
hvoEKXaRsn2uwRl1obO9MpVVyol6Q80R2922KZb+NsUQcLTGFmznsimIrbZx
LgyO5ZrW/lhRQo3NxbTtdjYi24/6rWrCtDJwM/XJjUb2MkFZPKMuxLf7+cD6
kGRQLkyfpkrx0cUQcLTmxlAyTT9vij/Xno+UH9tV26Rva7idisqM7M0okzlo
ZgxwWH4wO1YTQ5VVyp5LOjfU7Lz7dTTXOdyhGAKO1i5fyLcruzKLtaazY24M
jbyiaieLIrILyabLFGOoMHRWWqRRF0OV1c6cSGaJQvN7aZNoMGgphoAjtUMM
BelwVDHUiten1ay7zs5VfV0M1Vc7lImhkRkiMQQcrdkx1M/XrAqNbcWgXO3c
0Ice71a80WmizNcOyu1U7bVBDAUDcc3vNFlXL4aAIzUzhrov7evmLl41tzEd
K/GxdlyiUGG3dQtfuURh52oPYmhdja4OzVGSX4oYAo7WrBhKCme3nWqEC3fZ
5Ls8xQXbg50vhjfapNWrKfOJC7ZrYqiuSjlhDDXVa8u3h8jUUwwBR2pGDJUX
emX6Asng22ZVw+BAEyNvhQ3X1d6+k7sjKU29mjLl+uxw++p0DNVWKSe8fXWx
vRFpucj+HsUQcLSm/tDDdnhntH3eZtPouoKZSxqmatjV7XmxuimUCbpC02VG
6zP3YT7TMVRdpZzF45wps5cbTzcFjlRlDJWfjZA+NKB7OM/6u3rV6q+6dQjp
89myd9kkCZjtUEyW+aRHm86YG6qpdu4o1X8K6v24/oofcDaCGGKv8o9O3alv
BfB9+CPaAByQGALggMQQAAckhgA4IDEEAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAB8P78BwH4cOuIAAAAAAAAAAAAAAAAAAAAAAAAAIPJy8+P+8sf9zeLTCwPA
pBnJ8nz7cNkUvrx+2X/FAPgc29a7fx1Tb0JvCODbGgZQ8HpcHrp6DckC8D0t
r0uJ07X8lxer5wPVbVgZMQTwrSwe2wy6un3Nfr68PYYMejuNGOov5vTLpBXA
Wt/fmdEqNpt0/aPXu4v7bIoFPaxSxrWH7vpfUfl856st/3D3tP4hGkXMlB/P
rP6sy4eL698ddMLT6qr+Mi4eS7kPcEa6b+91zWynj4/3VjfXUCcBVP7+3+8n
34MYVmkTQ3GIjA4nDmOoVL2gZHb/FSOTi9Wcy/h6d6tDBJy7rk2eN/XTxcHV
RW71Qp8pYfvf91ySZAlb++CjTbqltSqUzw8q5mNom0FBJq7fvFgtn17jMsGp
NVV67+nUx9DyerP569119vKKIYB+SG3ePMUO6xa6A2WTInP0PoniENnEUJp9
XXBE+8nF0NQsWFjVXWagot5QU4G2Sm2KpQcVQwDZdJi0y1KBrkM0mRRxxSrL
dzuPYjFTuK7rt9s1aSSDcmH6NAkY11wMAZSa3OHkSNgBmRFD6UTMVFKkG9aV
r4uh7p3pfNnOVc28YWowN9RUrBs/bM4o3KEYAigNyn00hoo3w1bHUGUHZ07h
OZ24ZNVE5aBlbolCkz5tEkUrA8UQwFvVOFXSeL5NtefbJdxh12NWrMwt//kx
1IqWAlZsmImhkRkiMQRQs2B7XgwVFsXNjqHaVQczdl49KFeqzOSy9kEMBQNx
TTpHNRRDAG8Vt6/OiqHi/P7MGMpGxtcsUciqW7eQxNA64sObbZOZJjEEsLaZ
xym0sbvE0OCj7BrvqVgp3Ge0cwxl72kael4M7w+aH0PNsdrybfUGBxVDAJ3y
o003Ez21g3KZez/D6f5cUmRuJs3H4odjqPDooSgmcrcslUYaU+Htq4vNGb0u
F9nwEkMAW6N/6KF2cGwtntbfplsbRqUYGr4yg4Qfj6G3ZAXF8IjPi9VNoUDN
Su8591K93Hi6KUAs87y1OXGQFIhGwNp4yiRF08WoWpP2KTHUmF6PnURk5TP3
Xm6qJ57e63zUjwoH+P6iJ2Z/E/nO4E59KwD26xT+fhAA35YYAuCAxBAABySG
ADggMQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJyK3wBgPw4dcQAAAAAAAAAA
AAAAAAAAAAAAAACwLy83P+4vf9zfLE6oGkdSZwA+6vn24bJp0i+vXw5akRnJ
cjR1Bvhcr3cX9137Fr++9bfu/fUsuj1vXxer58+pxlf1hhaPwg74QsUYOoMw
+lyjVzLfqh/lOJsYAr5U13he3b6G726HgAYfkRNkUNSAl95vHWMMdb96MQR8
kXwMhR9d/ni4ezpAzU7IJrWzgbL5dHCRzyaG2h5WzUv8wdkZiaG37UxH1zh0
P44X7hvV5sd+ZmR5XTVdEhXLHyjcbTwOFrRgYW8ud7jx9j+e3xmb3InKj3Qb
+/N6XGY27FJ+6hKN1jlu50c7sMWzSy5+dmA2LlP3/eRpdVUfLotHvW84M+Mx
tGnP+/aza+6S5jT4aNustc3d4/K9Fco0bukeSm3g4Otxv9vsF+x14cEigUyr
XmzSa5ri/ImPt8n9RYj308fQbbazkOywVOfCnFQuPcfPburccxe2JqYXqzm9
6de7Wx0iOCsTMTRoPyca8GA/YasVtKh9fERH7N8Md9snYL41TrKs1I0qDJfl
z2K7kyD71m9erJZPUz2dida4D4soVQuXaBPc0T4n6hy8n++dVZ5dV2zQf8l0
6Jp6vvd06mNoeb3Z/PXuOnvFxBCcm6kYGrR+hWYqGl8KNxy2z6WGrq5upd1u
m/S4oR5r/6OS2Xyclt1/Ri6tkjHPQKb3NFLnYUes7zPOP7vCb6c7zV2msaLe
UFOxdudtiqX1EUNwbmpjaFugayHjUbX2zYpv72+bHsr0nEt2unxibGp4Irl2
NbOTuk7N0OQFHNn/yHTPMN2Kdc4euv0o/fJQcXbjMbTLxE0yKBemTxOO6dcG
MQTnZX4M5b4Yt3mR7bbsEEPpJEVV0108kbosm15mULCnGBqWL9Z5ZHleX6sZ
Z1fsq24n43IzgyMGc0NN3cKFGeEOxRCcm9mDcm+Zhr3dSeWUejGGouVtB4qh
+YNOMwflqnp2QbUrYmjklcRQzdmNDZkmy0Iq17/llig0R2n/wSTjh2IIzk3l
EoVsxPRNR2ZE7m1mDEXLvdIFBkcdQ/OWKFR2GN+OM4Za8dLH6X1mYmhkhkgM
wbmZuWC7F0495Ebk3mbFUGFR3AFiaKe5jw8u2B4dlBubG6oPl88YlCuVnLx7
aBBDwUBc81tLvpCIITgvs25fDWyfPJYdkXubE0NTCfIVMbTzEoW3sauU7Dx/
+2o2R4bBMW+JQr4Cuy9RyKqbF0tiaP0vp/vX0vxqkmsihuDcjLQkmzGf7Nfd
TfpET0sYbl4fQ4OS2bXZ+4qh7L1LlSof5lM6wWKdcwvg6xZsD1SfXSmwnhfD
+4Pmx1BTjbZ8e46Z36MYgvMy/WjTUsPVNSPXj+MpVjMol+kshLPhXxNDwfxU
uJNCa5nK3hxa+WjTwtWomkgqFF4fd/hO1dllAys3qFgaSk2Ft68utstalots
eIkhODfjf+ihar6jUGzOEoXSA3/SBwSN7PbjMTR6NWbMldRv3q30uMlumL9B
eE6dh+NdVWeXrnx4v6TPi9VNYdvpIcHF45wO5suNp5vCeSk1TVVPrRydcZi7
YDtq/bqtZtwV+ykx1NhtWXJcjUJXLhGMZ04vPxutc5rj5Vt7qs4uPovBar1Z
/0jWW1XPuL3/so7qeePAkaufIufDjvGvQtTK93Z36lsBbA2fI8f+nHIMAeyB
P9P5pfL3EQOcq/qlwnyG0n3EAOclHuQ3kr93yayKvidw5oJ1ViYpvkD0uFcZ
BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfJp/ApQaQqY=
"], {{0, 228}, {557, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{270., Automatic},
ImageSizeRaw->{557, 228},
PlotRange->{{0, 557}, {0, 228}}]\)
In[5]:=
NotebookClose[nb];

More Examples

Scope

Retrieve the function:

In[6]:=
ResourceFunction["CloseCellGroups"]
Out[6]=

Retrieve the resource:

In[7]:=
ResourceObject["CloseCellGroups"]
Out[7]=

Resource History