Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Clausen function
ResourceFunction["ClausenCl"][n,z] gives the Clausen function Cln(z). |
Evaluate numerically:
In[1]:= |
Out[1]= |
Plot the first few Clausen functions:
In[2]:= |
Out[2]= |
Evaluate for complex arguments and parameters:
In[3]:= |
Out[3]= |
Evaluate to high precision:
In[4]:= |
Out[4]= |
The precision of the output tracks the precision of the input:
In[5]:= |
Out[5]= |
Simple exact values are generated automatically:
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
ClausenCl threads elementwise over lists:
In[8]:= |
Out[8]= |
Parity transformations and periodicity relations are automatically applied:
In[9]:= |
Out[9]= |
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
Plots of the Clausen function in the complex plane:
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
The Clausen function can be expressed in terms of PolyLog:
In[14]:= |
Out[14]= |
The Clausen function appears in the reflection formula for BarnesG:
In[15]:= |
Out[15]= |
Verify a relationship between the Clausen function and the inverse tangent integral:
In[16]:= |
Out[16]= |
Verify the duplication theorem:
In[17]:= |
Out[17]= |
Values of the Clausen function at rational multiples of π can be expressed in terms of PolyGamma:
In[18]:= |
Out[18]= |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License