Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Church combinator
ResourceFunction["ChurchCombinator"][n] gives a combinator corresponding to the n-th Church numeral where n is an integer. | |
ResourceFunction["ChurchCombinator"][op] gives a combinator corresponding to the operator op. |
Generate a combinator corresponding to the seventh Church numeral:
In[1]:= |
Out[1]= |
Apply combinator transformation rules to see the numeral itself:
In[2]:= |
Out[2]= |
Convert to an integer:
In[3]:= |
Out[3]= |
Combinator for the zeroth Church numeral:
In[4]:= |
Out[4]= |
Apply combinator transformation rules to see the numeral itself:
In[5]:= |
Out[5]= |
In[6]:= |
Out[6]= |
Increment a Church numeral combinator:
In[7]:= |
Out[7]= |
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
Add two Church numeral combinators:
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
In[12]:= |
Out[12]= |
Multiply two Church numeral combinators:
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
In[15]:= |
Out[15]= |
Raise a Church numeral combinator to the power of another Church numeral combinator:
In[16]:= |
Out[16]= |
In[17]:= |
Out[17]= |
In[18]:= |
Out[18]= |
ChurchCombinator is only defined for nonnegative integer n:
In[19]:= |
Out[19]= |
ChurchCombinator does not support all integer operations:
In[20]:= |
Out[20]= |
This work is licensed under a Creative Commons Attribution 4.0 International License