Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get a numerically sorted list of abscissas for Chebyshev equal-weight quadrature
ResourceFunction["ChebyshevQuadratureAbscissas"][n,{a,b}] gives a list of the n abscissas xi of the n-point Chebyshev equal-weight formula for quadrature on the interval a to b. | |
ResourceFunction["ChebyshevQuadratureAbscissas"][n,{a,b},prec] uses the working precision prec. |
The abscissas for a 9-point Chebyshev quadrature on a given interval:
| In[1]:= |
| Out[1]= |
Use the specified precision:
| In[2]:= |
| Out[2]= | ![]() |
Use Chebyshev quadrature to approximate the area under a curve:
| In[3]:= |
| Out[3]= |
Plot the curve over a given interval:
| In[4]:= |
| Out[4]= | ![]() |
Approximate the area under the curve using n-point Chebyshev quadrature:
| In[5]:= |
| In[6]:= |
| Out[6]= |
Compare to the output of NIntegrate:
| In[7]:= |
| Out[7]= |
| In[8]:= |
| Out[8]= |
Chebyshev abscissas are purely real-valued only for n≤7 and n=9:
| In[9]:= | ![]() |
| Out[9]= | ![]() |
For other values of n, complex-valued Chebyshev abscissas appear:
| In[10]:= |
| Out[10]= |
Plot the 100-point Chebyshev quadrature abscissas in the complex plane:
| In[11]:= |
| Out[11]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License