Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Produce Chebyshev nodes
ResourceFunction["ChebyshevNodes"][n] produces n Chebyshev nodes in the range from -1 to 1. | |
ResourceFunction["ChebyshevNodes"][n,{min,max}] produces n Chebyshev nodes in the domain min to max. |
Create ten Chebyshev nodes analytically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Approximate the numbers:
In[2]:= | ![]() |
Out[2]= | ![]() |
Create the numbers on a domain from 0 to 2π:
In[3]:= | ![]() |
Out[3]= | ![]() |
Show on a number line:
In[4]:= | ![]() |
Out[4]= | ![]() |
Find points for fifth order approximation:
In[5]:= | ![]() |
Out[6]= | ![]() |
Perform the approximation of Cos[x]:
In[7]:= | ![]() |
Out[8]= | ![]() |
Represent the approximation as a polynomial:
In[9]:= | ![]() |
Out[9]= | ![]() |
Compare the functions:
In[10]:= | ![]() |
Out[10]= | ![]() |
Show the difference:
In[11]:= | ![]() |
Out[11]= | ![]() |
Compare to the error from a fifth-order series expansion evaluated at the midpoint:
In[12]:= | ![]() |
Out[12]= | ![]() |
The Chebyshev nodes are related to the roots of Chebyshev polynomials of the first kind:
In[13]:= | ![]() |
Out[14]= | ![]() |
Compare the zeros by finding the roots numerically and using the function ChebyshevNodes:
In[15]:= | ![]() |
Out[16]= | ![]() |
Chebyshev nodes match the coordinate components of CirclePoints:
In[17]:= | ![]() |
Out[17]= | ![]() |
Show how Chebyshev nodes are related to equi-distantly spaced points on a semi-circle:
In[18]:= | ![]() |
Out[19]= | ![]() |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License