Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate an n-sized centering matrix
ResourceFunction["CenteringMatrix"][n] generates an n-sized centering matrix. |
Generate the 3×3 centering matrix:
In[1]:= |
Out[1]= |
Center a vector:
In[2]:= |
Out[3]= |
Confirm the vector is centered:
In[4]:= |
Out[4]= |
Center a matrix column-wise:
In[5]:= |
Out[4]= |
Confirm the matrix is centered:
In[6]:= |
Out[6]= |
Center a matrix row-wise:
In[7]:= |
Out[8]= |
Confirm the matrix is centered:
In[9]:= |
Out[9]= |
Double center a matrix:
In[10]:= |
Out[11]= |
Confirm the matrix is double centered:
In[12]:= |
Out[12]= |
By default WorkingPrecision is set to MachinePrecision:
In[13]:= |
Out[13]= |
Compute the 3×3 centering matrix with 2-digit precision:
In[14]:= |
Out[14]= |
Compute the 3×3 centering matrix with machine precision:
In[15]:= |
Out[15]= |
Compute the 3×3 centering matrix with exact values:
In[16]:= |
Out[16]= |
By default, CenteringMatrix will return a SparseArray:
In[17]:= |
Out[17]= |
Explicitly request a dense matrix from CenteringMatrix:
In[18]:= |
Out[18]= |
Define a fictional tabular dataset of species observations by site:
In[19]:= |
Out[19]= |
Double center the dataset:
In[20]:= |
Out[20]= |
Confirm the dataset is double centered:
In[21]:= |
Out[21]= |
Define a function to perform PCoA (Classical Multidimensional Scaling) that uses CenteringMatrix:
In[22]:= |
Load the Iris dataset, and create a distance matrix from the data:
In[23]:= |
Perform PCoA on the distance matrix, and group the reprojected data by species:
In[24]:= |
Plot the data in sPCoA coordinate space:
In[25]:= |
Out[25]= |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License