Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Carleman matrix of a function
ResourceFunction["CarlemanMatrix"][f,{x,x0,{m,n}}] gives the order {m,n} Carleman matrix of f about the point x=x0. | |
ResourceFunction["CarlemanMatrix"][f,{x,x0,n}] gives the order n Carleman matrix of f about the point x=x0. |
A Carleman matrix of order {2,3} for Exp[x]:
In[1]:= |
Out[1]= |
Carleman matrix of an arbitrary function:
In[2]:= |
Out[2]= |
Carleman matrix with a complex-valued expansion point:
In[3]:= |
Out[3]= |
The kth row of the Carleman matrix of f(x) corresponds to the power series coefficients of :
In[4]:= |
Out[4]= |
In[5]:= |
Out[5]= |
If f(0)=0, the second row of the nth matrix power of the Carleman matrix of f(x) corresponds to the power series coefficients of the nth composition of f(x):
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
If f(0)=0, the second row of the inverse of the Carleman matrix of f(x) corresponds to the power series coefficients of :
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
This work is licensed under a Creative Commons Attribution 4.0 International License