Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Carleman matrix of a function
ResourceFunction["CarlemanMatrix"][f,{x,x0,{m,n}}] gives the order {m,n} Carleman matrix of f about the point x=x0. | |
ResourceFunction["CarlemanMatrix"][f,{x,x0,n}] gives the order n Carleman matrix of f about the point x=x0. |
A Carleman matrix of order {2,3} for Exp[x]:
| In[1]:= |
| Out[1]= | ![]() |
Carleman matrix of an arbitrary function:
| In[2]:= |
| Out[2]= | ![]() |
Carleman matrix with a complex-valued expansion point:
| In[3]:= |
| Out[3]= | ![]() |
The kth row of the Carleman matrix of f(x) corresponds to the power series coefficients of
:
| In[4]:= |
| Out[4]= |
| In[5]:= |
| Out[5]= |
If f(0)=0, the second row of the nth matrix power of the Carleman matrix of f(x) corresponds to the power series coefficients of the nth composition of f(x):
| In[6]:= |
| Out[6]= |
| In[7]:= |
| Out[7]= |
If f(0)=0, the second row of the inverse of the Carleman matrix of f(x) corresponds to the power series coefficients of
:
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= |
This work is licensed under a Creative Commons Attribution 4.0 International License