Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Carleman matrix of a function
ResourceFunction["CarlemanMatrix"][f,{x,x0,{m,n}}] gives the order {m,n} Carleman matrix of f about the point x=x0. | |
ResourceFunction["CarlemanMatrix"][f,{x,x0,n}] gives the order n Carleman matrix of f about the point x=x0. |
A Carleman matrix of order {2,3} for Exp[x]:
In[1]:= | ![]() |
Out[1]= | ![]() |
Carleman matrix of an arbitrary function:
In[2]:= | ![]() |
Out[2]= | ![]() |
Carleman matrix with a complex-valued expansion point:
In[3]:= | ![]() |
Out[3]= | ![]() |
The kth row of the Carleman matrix of f(x) corresponds to the power series coefficients of :
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
If f(0)=0, the second row of the nth matrix power of the Carleman matrix of f(x) corresponds to the power series coefficients of the nth composition of f(x):
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
If f(0)=0, the second row of the inverse of the Carleman matrix of f(x) corresponds to the power series coefficients of :
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License