Function Repository Resource:

BulirschEL3

Source Notebook

Evaluate Bulirsch's incomplete elliptic integral of the third kind

Contributed by: Jan Mangaldan

ResourceFunction["BulirschEL3"][x,m,p]

gives Bulirsch's incomplete elliptic integral of the third kind .

Details

Mathematical function, suitable for both symbolic and numerical manipulation.
Bulirsch’s incomplete elliptic integral of the third kind is defined as .
When x=, ResourceFunction["BulirschEL3"] is referred to as a complete integral.
Argument conventions for elliptic integrals are discussed in "Elliptic Integrals and Elliptic Functions".
For certain special arguments, ResourceFunction["BulirschEL3"] automatically evaluates to exact values.
ResourceFunction["BulirschEL3"] can be evaluated to arbitrary precision.
ResourceFunction["BulirschEL3"] automatically threads over lists.

Examples

Basic Examples (1) 

Evaluate numerically:

In[1]:=
ResourceFunction["BulirschEL3"][3.4, 0.7, -1.8]
Out[1]=
In[2]:=
ResourceFunction["BulirschEL3"][\[Infinity], 0.7, -1.8]
Out[2]=

Scope (5) 

Evaluate numerically for complex arguments:

In[3]:=
ResourceFunction["BulirschEL3"][1 - 2. I, 2.5 + I, -1.8]
Out[3]=

Evaluate to high precision:

In[4]:=
ResourceFunction["BulirschEL3"][-2.`30, 1/2, 3]
Out[4]=

The precision of the output tracks the precision of the input:

In[5]:=
ResourceFunction["BulirschEL3"][-2.000000000000000000000, 1/2, 3]
Out[5]=

Simple exact results are generated automatically:

In[6]:=
ResourceFunction["BulirschEL3"][0, m, p]
Out[6]=
In[7]:=
ResourceFunction["BulirschEL3"][x, {0, 1}, 1/2]
Out[7]=

BulirschEL3 threads elementwise over lists:

In[8]:=
ResourceFunction["BulirschEL3"][{0.2, 0.3, 0.7}, 2.4, 1/3]
Out[8]=

Series expansion of BulirschEL3 at the origin:

In[9]:=
Series[ResourceFunction["BulirschEL3"][z, m, p], {z, 0, 5}]
Out[9]=

Applications (2) 

Total arc length of a cornoid:

In[10]:=
N[4/Sqrt[3] (1/
     3 ResourceFunction["BulirschEL3"][\[Infinity], 1/3, 1/4] + ResourceFunction["BulirschEL3"][\[Infinity], 1/3, 1/3] - 1/3 ResourceFunction["BulirschEL3"][\[Infinity], 1/3, 1]), 25]
Out[10]=

Compare with the result of ArcLength:

In[11]:=
ArcLength[{Cos[t] (1 - 2 Sin[t]^2), Sin[t] (1 + 2 Cos[t]^2)}, {t, 0, 2 \[Pi]}, WorkingPrecision -> 25]
Out[11]=

Visualize the solid angle subtended by a cylinder:

In[12]:=
With[{pc = {0, 2, 3/4}, r = 1, h = 3/2}, Graphics3D[{Sphere[{0, 0, 0}, r/20], Cylinder[{pc, pc + {0, 0, h}}, r]}]]
Out[12]=

Evaluate the solid angle:

In[13]:=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/52510be7-5435-42db-946a-21e2e5b98b36"]
Out[13]=

Compare with the result of NIntegrate:

In[14]:=
With[{pc = {0, 2, 3/4}, r = 1, h = 3/2, prec = 20},
 With[{b = r^2/Norm[Most[pc]], c = r Sqrt[1 - r^2/Norm[Most[pc]]^2], d = Norm[Most[pc]], zc = Last[pc]},
  NIntegrate[(
    2 (h + zc) Sqrt[r^2 - x1^2])/(((d + x1)^2 + (h + zc)^2) Sqrt[
     d^2 + r^2 + 2 d x1 + (h + zc)^2]), {x1, -r, -b}, WorkingPrecision -> prec] + NIntegrate[(
    2 zc Sqrt[r^2 - x1^2])/(((d + x1)^2 + zc^2) Sqrt[
     d^2 + r^2 + 2 d x1 + zc^2]), {x1, -b, r}, WorkingPrecision -> prec] + NIntegrate[(
    2 c (d - b))/(((d - b)^2 + (z1 + zc)^2) Sqrt[
     c^2 + (d - b)^2 + (z1 + zc)^2]), {z1, 0, h}, WorkingPrecision -> prec]]]
Out[14]=

Properties and Relations (2) 

Both incomplete and complete cases of EllipticPi can be expressed in terms of BulirschEL3:

In[15]:=
With[{n = 4/5, \[Phi] = \[Pi]/5, m = 2/3}, N[{EllipticPi[n, \[Phi], m], ResourceFunction["BulirschEL3"][Tan[\[Phi]], 1 - m, 1 - n]}]]
Out[15]=
In[16]:=
With[{n = 4/5, m = 2/3}, N[{EllipticPi[n, m], ResourceFunction["BulirschEL3"][\[Infinity], 1 - m, 1 - n]}]]
Out[16]=

Express EllipticF and EllipticE in terms of BulirschEL3:

In[17]:=
With[{\[Phi] = \[Pi]/5, m = 2/3}, N[{EllipticF[\[Phi], m], ResourceFunction["BulirschEL3"][Tan[\[Phi]], 1 - m, 1]}]]
Out[17]=
In[18]:=
With[{\[Phi] = \[Pi]/5, m = 2/3}, N[{EllipticE[\[Phi], m], (1 - m) ResourceFunction["BulirschEL3"][Tan[\[Phi]], 1 - m, 1 - m] + (m Sin[2 \[Phi]])/(2 Sqrt[1 - m Sin[\[Phi]]^2])}]]
Out[18]=

Requirements

Wolfram Language 12.3 (May 2021) or above

Version History

  • 1.0.0 – 29 June 2021

Source Metadata

Related Resources

Author Notes

Requires 12.3 or later.
The form of the second argument was changed from the original definition used by Bulirsch, so that BulirschEL3 uses the parameter m=k2 instead of the modulus k. This conforms with Mathematica's choice to use the parameter in the built-in elliptic integrals and functions.

License Information