This resource function is obsolete. Use the function BuckyballGraph instead.

Function Repository Resource:

# BuckyballGraph

Create a graph of an order-n buckyball

Contributed by: Jan Mangaldan
 ResourceFunction["BuckyballGraph"][n] gives a graph corresponding to an order-n buckyball. ResourceFunction["BuckyballGraph"][class,n] gives a graph corresponding to an order-n buckyball of class class.

## Details and Options

Possible values of class include "I", "II", 1 and 2.
ResourceFunction["BuckyballGraph"][n] is equivalent to ResourceFunction["BuckyballGraph"][2, n].
ResourceFunction["BuckyballGraph"][1, n] or ResourceFunction["BuckyballGraph"]["I", n] generates a three-dimensional graph corresponding to the class I (n+1,0) Goldberg polyhedron, the dual polyhedron of a geodesic sphere.
ResourceFunction["BuckyballGraph"][2, n] or ResourceFunction["BuckyballGraph"]["II", n] generates a three-dimensional graph corresponding to the class II (n,n) Goldberg polyhedron.
ResourceFunction["BuckyballGraph"] takes the same options as Graph3D.
With the setting VertexCoordinates"Embedded", coordinates corresponding to the vertices of the buckyball are generated with a special method.

## Examples

### Basic Examples (3)

Generate an order-2 buckyball:

 In[1]:=
 Out[1]=

The above buckyball is a class II, order-2 buckyball:

 In[2]:=
 Out[2]=

Generate a class I, order-3 buckyball:

 In[3]:=
 Out[3]=

Generate an order-2 buckyball with specially computed coordinates:

 In[4]:=
 Out[4]=

### Scope (3)

Generate a dodecahedral graph:

 In[5]:=
 Out[5]=

Show an order-1 buckyball of different classes:

 In[6]:=
 Out[6]=

Convert to a Graph object:

 In[7]:=
 Out[7]=

### Options (4)

#### GraphLayout (1)

Specify various layouts for the buckyball graph:

 In[8]:=
 Out[8]=
 In[9]:=
 Out[9]=

#### PlotTheme (1)

Use a large graph theme:

 In[10]:=
 Out[10]=

#### VertexCoordinates (2)

By default, vertex coordinates are computed automatically, depending on the setting for GraphLayout:

 In[11]:=
 Out[11]=

Use specially computed coordinates for the vertices:

 In[12]:=
 Out[12]=

### Properties and Relations (1)

BuckyballGraph[1] (the class II, order-1 buckyball) is the graph corresponding to the truncated icosahedron:

 In[13]:=
 Out[13]=
 In[14]:=
 Out[14]=

### Neat Examples (2)

Generate a fullerene molecule from its corresponding skeletal graph:

 In[15]:=
 Out[16]=

Visualize the graph and the corresponding fullerene:

 In[17]:=
 Out[17]=

## Version History

• 2.0.1 – 24 January 2022
• 2.0.0 – 30 September 2020
• 1.0.0 – 27 February 2020