Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the Gaussian curvature for a metric
ResourceFunction["BrioschiCurvature"][m,{u,v}] computes the Gaussian curvature for a metric m with respect to variables u and v from the Brioschi formula. | |
ResourceFunction["BrioschiCurvature"][{fx,fy,fz},{u,v}] computes the Gaussian curvature for a parametrization with respect to variables u and v. | |
ResourceFunction["BrioschiCurvature"][e,f,g,{u,v}] computes the Gaussian curvature from the first fundamental form coefficients e,f and g. |
Compute the Gaussian curvature of a sphere using the Brioschi formula:
In[1]:= |
|
Out[1]= |
|
Define a funnel:
The covariant basis:
In[2]:= |
|
Out[2]= |
|
The metric tensor:
In[3]:= |
|
Out[3]= |
|
Compute the Brioschi curvature:
In[4]:= |
|
Out[4]= |
|
The Brioschi formula may be slower than computing the Gaussian curvature directly:
In[5]:= |
|
Out[5]= |
|
In[6]:= |
|
Out[6]= |
|
Apply the Brioschi formula for a parametrized surface:
In[7]:= |
|
Out[7]= |
|
Apply using the first fundamental form coefficients:
In[8]:= |
|
Out[8]= |
|
In[9]:= |
|
Out[9]= |
|
The covariant basis of a surface:
In[10]:= |
|
Out[10]= |
|
The metric tensor:
In[11]:= |
|
Out[11]= |
|
Compute the scalar curvature:
In[12]:= |
|
Out[12]= |
|
This coincides with twice the Gaussian curvature:
In[13]:= |
|
Out[13]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License