Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get data about various black hole models
ResourceFunction["BlackHoleModelData"][solution] returns the metric for the specified solution of the Einstein field equations. | |
ResourceFunction["BlackHoleModelData"][solution,property] returns the symbolic expression for the specified property in the given metric. | |
ResourceFunction["BlackHoleModelData"][solution,property,{var1→quantity1,var2→quantity2, …}] inserts the specified values quantityi for the variables vari into expressions. | |
ResourceFunction["BlackHoleModelData"][solution,property,attribute] gives the value of the specified attribute. |
"Coordinates" | the coordinate system of the solution |
"Entropy" | entropy |
"HorizonArea" | area of the event horizon |
"HorizonRadius" | radius of the event horizon |
"Metric" | Association of nonzero metric components for the solution |
"PenroseDiagram" | Penrose diagram |
"SurfaceGravity" | gravity at the event horizon boundary |
"Temperature" | temperature |
"QuantityVariableDimensions" | list of base dimensions for all variables |
"QuantityVariableNames" | English names for all variables |
"QuantityVariablePhysicalQuantities" | physical quantities for all variables |
"QuantityVariables" | list of all variables in the formula |
"QuantityVariableTable" | details on all variables for the formula |
Obtain the metric for a particular solution to the Einstein field equations:
In[1]:= |
Out[1]= |
Learn the expression for the entropy of a black hole in the Reissner–Nordstrom solution:
In[2]:= |
Out[2]= |
Determine the temperature of a rotating charged black hole with the mass of a million suns:
In[3]:= |
Out[3]= |
List all supported solutions:
In[4]:= |
Out[4]= |
List the available properties:
In[5]:= |
Out[5]= |
Look up the metric to a particular solution:
In[6]:= |
Out[6]= |
Obtain the expressions for various black hole properties:
In[7]:= |
Out[7]= |
Extract information on the physical quantities used to calculate the properties of black holes:
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
Explore Penrose diagrams for different black hole geometries:
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
Insert values for the important physical quantities of a black hole to learn the surface gravity on the event horizon:
In[14]:= |
Out[14]= |
Convert that to units of standard gravity:
In[15]:= |
Out[15]= |
Physical quantities can be specified as Quantity objects or numbers:
In[16]:= |
Out[16]= |
Quantity input is checked for the correct units:
In[17]:= |
Out[17]= |
Only valid physical quantities are used:
In[18]:= |
Out[18]= |
Some values are not physically realizable:
In[19]:= |
Out[19]= |
This work is licensed under a Creative Commons Attribution 4.0 International License