Function Repository Resource:

Bjorling

Source Notebook

Compute the Björling formula

Contributed by: Alfred Gray

ResourceFunction["Bjorling"][c,n,z]

computes the Björling minimal surface parametrization for the curve c and normal vector field n in the variable z.

Details and Options

The curve c has a normal vector field n if the tangent to the curve, zc(z), is everywhere perpendicular to n(z).

Examples

Basic Examples (2) 

Get the Björling minimal surface parametrization of a helix:

In[1]:=
helix = ResourceFunction["Bjorling"][{0, 0, z}, {Cos[z], Sin[z], 0}, z]
Out[1]=

Plot it:

In[2]:=
ParametricPlot3D[
 Evaluate[Re[helix /. z -> x + I y]], {x, 0, 2 Pi}, {y, -1, 1}]
Out[2]=

Get the Björling minimal surface parametrization of a Möbius band:

In[3]:=
mobius = ResourceFunction[
  "Bjorling"][{Cos[z], Sin[z], 0}, {Cos[z/2] Cos[z], Cos[z/2] Sin[z], Sin[z/2]}, z]
Out[3]=

Plot it:

In[4]:=
ParametricPlot3D[
 Evaluate[Re[mobius /. z -> x + I y]], {x, 0, 2 Pi}, {y, -1, 1}]
Out[4]=

Publisher

Enrique Zeleny

Version History

  • 1.0.0 – 26 February 2020

Source Metadata

License Information