Function Repository Resource:

# BisectionMethodFindRoot

Determine the root of an equation using the bisection method

Contributed by: Jason Martinez
 ResourceFunction["BisectionMethodFindRoot"][f,{x,xa,xb},tol,n] searches for a numerical root of f between the points xa and xb using tol digits and up to n steps. ResourceFunction["BisectionMethodFindRoot"][lhs⩵rhs,{x,xa,xb},tol,n] searches for a numerical solution to the equation lhs==rhs. ResourceFunction["BisectionMethodFindRoot"][f,{x,xa,xb},tol,n,property] returns a property of the search for the root of f.

## Details and Options

ResourceFunction["BisectionMethodFindRoot"] supports two options for property:
 "Solution" return the root of f "Steps" return a table of steps taken to reach the root
"PropertyAssociation" can be used to return an Association of the properties.
ResourceFunction["BisectionMethodFindRoot"] terminates when the result is correct to the requested tolerance or the maximum number of steps has been taken, whichever comes first.

## Examples

### Basic Examples (2)

Find the root of an expression using the bisection method:

 In[1]:=
 Out[1]=

Determine the steps to find the root of an equation:

 In[2]:=
 Out[2]=

### Scope (1)

Get the property association of a bisection search:

 In[3]:=
 Out[3]=

## Version History

• 1.0.0 – 02 August 2019