Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generalize the Fibonacci numbers for complex inputs using Binet's Fibonacci formula
ResourceFunction["BinetFibonacci"][n] gives the Fibonacci number Fn using Binet's Fibonacci formula. |
Compute Fibonacci numbers:
In[1]:= |
Out[1]= |
Generalize to real-valued inputs:
In[2]:= |
Out[2]= |
In[3]:= |
Out[3]= |
Use symbolic inputs:
In[4]:= |
Out[4]= |
Compare to the formula used by Fibonacci:
In[5]:= |
Out[5]= |
Plot the real and imaginary components:
In[6]:= |
Out[6]= |
Evaluate numerically:
In[7]:= |
Out[7]= |
In[8]:= |
Out[8]= |
Evaluate to high precision:
In[9]:= |
Out[9]= |
Compare the real component to Fibonacci:
In[10]:= |
Out[10]= |
The precision of the output tracks the precision of the input:
In[11]:= |
Out[11]= |
Complex number inputs:
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
The curve intersects the real axis at the Fibonacci numbers:
In[14]:= |
Out[14]= |
Negative inputs produce a spiral in order to alternate between positive and negative values:
In[15]:= |
Out[15]= |
Verify with Fibonacci:
In[16]:= |
Out[16]= |
For real n, Re[BinetFibonacci[n]] is equivalent to Fibonacci[n]:
In[17]:= |
Out[17]= |
In[18]:= |
Out[18]= |
BinetFibonacci automatically threads over lists:
In[19]:= |
Out[19]= |
For large lists, it is more efficient to apply BinetFibonacci directly to the List rather than mapping it:
In[20]:= |
In[21]:= |
Out[21]= |
In[22]:= |
Out[22]= |
The numerical error can become significant for larger values due to differing formulas:
In[23]:= |
Out[23]= |
The resource function InverseFibonacci does not accept the complex values produced by BinetFibonacci:
In[24]:= |
Out[24]= |
Extract the real component first using Re:
In[25]:= |
Out[25]= |
This work is licensed under a Creative Commons Attribution 4.0 International License