Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the bidiagonal decomposition of a numerical matrix
ResourceFunction["BidiagonalDecomposition"][m] gives the bidiagonal decomposition for a numerical matrix m as a list of matrices {q,b,p}, where q and p are orthonormal matrices and b is an upper bidiagonal matrix. |
Compute the bidiagonal decomposition for a 3×2 numerical matrix:
In[1]:= |
Out[1]= |
In[2]:= |
Out[2]= |
m is a 3×4 matrix:
In[3]:= |
Find the bidiagonal decomposition of m using machine-number arithmetic:
In[4]:= |
Out[4]= |
In[5]:= |
Out[5]= |
Find the bidiagonal decomposition of m using 24-digit precision arithmetic:
In[6]:= |
Out[6]= |
The bidiagonal decomposition of a random complex-valued 2×4 matrix:
In[7]:= |
Out[7]= |
m is a random matrix with 3 columns:
In[8]:= |
Out[8]= |
Find the bidiagonal decomposition of m:
In[9]:= |
Out[9]= |
Verify that m is equal to q.b.ConjugateTranspose[p]:
In[10]:= |
Out[10]= |
Verify that q and p are unitary:
In[11]:= |
Out[11]= |
In[12]:= |
Out[12]= |
b has the same singular values as m:
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
This work is licensed under a Creative Commons Attribution 4.0 International License