Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the control points of a Bézier curve that interpolates a given set of points
ResourceFunction["BezierInterpolatingControlPoints"][{x1,x2,…},{f1,f2,…}] gives the Bernstein basis coefficients of the interpolating polynomial for the function values fi corresponding to x values xi. | |
ResourceFunction["BezierInterpolatingControlPoints"][{t1,t2,…},{{x1,y1,…},{x2,y2,…},…}] generates the control points for a full-degree interpolating Bézier curve with interpolation nodes ti and points {xi,yi,…}. |
A list of points:
| In[1]:= |
Get the coefficients of the Bézier interpolant:
| In[2]:= |
| Out[2]= |
Plot the Bézier interpolant along with the points:
| In[3]:= |
| Out[3]= | ![]() |
A set of points to interpolate:
| In[4]:= |
Generate the Bézier control points:
| In[5]:= |
| Out[5]= |
Show the Bézier curve along with the points:
| In[6]:= | ![]() |
| Out[6]= | ![]() |
Use BezierInterpolatingControlPoints to generate an interpolating Bézier surface patch:
| In[7]:= | ![]() |
| Out[7]= |
| In[8]:= | ![]() |
| Out[8]= | ![]() |
With inexact inputs, the result of BezierInterpolatingControlPoints is usually more accurate than using LinearSolve with BernsteinBasis:
| In[9]:= | ![]() |
| Out[9]= |
| In[10]:= |
| Out[10]= |
| In[11]:= |
| Out[11]= |
| In[12]:= |
| Out[12]= |
This work is licensed under a Creative Commons Attribution 4.0 International License