Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the asymptotes to a given curve in two dimensions
ResourceFunction["Asymptotes"][expr,x,y] finds the asymptotes of the expression expr in terms of independent variable x and dependent variable y. | |
ResourceFunction["Asymptotes"][expr,x,y,type] finds the asymptotes of expr whose type matches the string argument type. |
Compute the asymptotes of a decaying exponential:
In[1]:= |
Out[1]= |
In[2]:= |
Out[2]= |
Compute the asymptotes of a hyperbola:
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
Compute the asymptotes of a rational function:
In[5]:= |
Out[5]= |
In[6]:= |
Out[6]= |
Compute only the oblique asymptotes of the previous function:
In[7]:= |
Out[7]= |
Compute the asymptotes of a periodic function:
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
Compute the asymptotes of an algebraic function:
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
Compute a list of all asymptotes of the previous function:
In[12]:= |
Out[12]= |
Compute the asymptotes of another algebraic function:
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
Compute the asymptotes of a transcendental function:
In[15]:= |
Out[15]= |
In[16]:= |
Out[16]= |
Implicitly defined curves can be specified using an expression with head Equal in the first argument:
In[17]:= |
Out[17]= |
In[18]:= |
Out[18]= |
In certain cases, parabolic asymptotes may be returned:
In[19]:= |
Out[19]= |
In[20]:= |
Out[20]= |
In[21]:= |
Out[21]= |
In[22]:= |
Out[22]= |
In[23]:= |
Out[23]= |
In[24]:= |
Out[24]= |
In[25]:= |
Out[25]= |
In[26]:= |
Out[26]= |
Asymptotes found that are neither linear or parabolic are classified as "Other":
In[27]:= |
Out[27]= |
In[28]:= |
Out[28]= |
In[29]:= |
Out[29]= |
In[30]:= |
Out[30]= |
This work is licensed under a Creative Commons Attribution 4.0 International License