Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the generalized outer product of lists and get an association keyed by arguments
ResourceFunction["AssociationOuter"][f,list1,list2,…] gives the generalized outer product of the listi as a nested association, forming all possible combinations of the lowest-level elements in each of them as keys, and feeding them as arguments to f for values. | |
ResourceFunction["AssociationOuter"][f,list1,list2,…,n] treats as separate elements only sublists at level n in the listi. | |
ResourceFunction["AssociationOuter"][f,list1,list2,…,n1,n2,…] treats as separate elements only sublists at level ni in the corresponding listi. |
Compute an outer product:
In[1]:= | ![]() |
Out[1]= | ![]() |
Compare to Outer:
In[2]:= | ![]() |
Out[2]= | ![]() |
Outer product of vectors:
In[3]:= | ![]() |
Out[3]= | ![]() |
Outer product of matrices:
In[4]:= | ![]() |
Out[4]= | ![]() |
The keys are nested so that values can be retrieved in argument order:
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
Treat nested lists as rank-1 vectors of sublists:
In[8]:= | ![]() |
Out[8]= | ![]() |
Arrays can be ragged:
In[9]:= | ![]() |
Out[9]= | ![]() |
Outer product of SparseArray objects:
In[10]:= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
Word combinations:
In[12]:= | ![]() |
Out[12]= | ![]() |
Function combinations:
In[13]:= | ![]() |
Out[13]= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
Complete bipartite graph:
In[15]:= | ![]() |
Out[15]= | ![]() |
Generate all possible binary trees with nodes from f and leaves from e to depth n:
In[16]:= | ![]() |
In[17]:= | ![]() |
Out[17]= | ![]() |
If each of the listi are duplicate-free, dimensions of the result are a concatenation of the dimensions of the inputs:
In[18]:= | ![]() |
Out[18]= | ![]() |
In[19]:= | ![]() |
Out[19]= | ![]() |
If there are duplicates, the dimensions will correspond to the number of unique elements in each listi:
In[20]:= | ![]() |
Out[20]= | ![]() |
In[21]:= | ![]() |
Out[21]= | ![]() |
Compare to Outer, which is unaffected by duplicates:
In[22]:= | ![]() |
Out[22]= | ![]() |
In[23]:= | ![]() |
Out[23]= | ![]() |
Use Map and Values to convert the result into the format given by Outer:
In[24]:= | ![]() |
Out[24]= | ![]() |
In[25]:= | ![]() |
Out[25]= | ![]() |
In[26]:= | ![]() |
Out[26]= | ![]() |
AssociationKeyFlatten can be used to convert the result into a flat association:
In[27]:= | ![]() |
Out[27]= | ![]() |
In[28]:= | ![]() |
Out[28]= | ![]() |
Restore the nested structure with AssociationKeyDeflatten:
In[29]:= | ![]() |
Out[29]= | ![]() |
Distribute forms the same combinations of all elements, but in a flat structure:
In[30]:= | ![]() |
Out[30]= | ![]() |
In[31]:= | ![]() |
Out[31]= | ![]() |
Use AssociationKeyFlatten and Values to get the same result:
In[32]:= | ![]() |
Out[32]= | ![]() |
AssociationOuter relates to Outer much like AssociationMap relates to Map:
In[33]:= | ![]() |
Out[33]= | ![]() |
In[34]:= | ![]() |
Out[34]= | ![]() |
In[35]:= | ![]() |
Out[35]= | ![]() |
In[36]:= | ![]() |
Out[36]= | ![]() |
Unlike Outer, the head must be List:
In[37]:= | ![]() |
Out[37]= | ![]() |
In[38]:= | ![]() |
Out[38]= | ![]() |
Unlike Outer, at least two arguments are required:
In[39]:= | ![]() |
Out[39]= | ![]() |
In[40]:= | ![]() |
Out[40]= | ![]() |
Values are nested by arguments in the order they were given to f, even if f is Orderless:
In[41]:= | ![]() |
Out[41]= | ![]() |
In[42]:= | ![]() |
Out[42]= | ![]() |
In[43]:= | ![]() |
Out[43]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License